БЫСТРОЕ СОЗДАНИЕ УГО, ПОСАДОЧНЫХ МЕСТ И 3D-МОДЕЛЕЙ КОМПОНЕНТОВ

в OrCAD Library Builder

УДК 621.3.049 ВАК 05.27.00 А. Панов¹

Одна из ответственных и трудоемких операций, которую регулярно выполняют инженеры-конструкторы печатных плат, – создание библиотечных компонентов для схем и плат. Кроме того, часто требуется сформировать 3D-модель компонента для стыковки с механическими САПР. Встроенные средства САПР обычно не позволяют автоматизировать процесс создания и проверки компонентов. Поэтому компания Cadence предложила дополнение к САПР OrCAD/Allegro – программу Library Builder, которая позволяет автоматически извлекать информацию из описания компонента и на ее основе быстро генерировать схемный символ (УГО), посадочное место и 3D-модель в формате STEP. Такой подход повышает эффективность работы инженеров, минимизирует вероятность ошибок и неточностей, например при описании посадочного места или нумерации схемного символа.

сли на описание компонента, содержащего несколько сотен или даже тысяч выводов, можно потратить, как правило, от получаса до нескольких часов, то с помощью программы OrCAD Library Builder, которая предлагается как дополнение к редактору OrCAD, ту же работу можно выполнить буквально за несколько минут. Основной прием, позволяющий сэкономить время, особенно в случае компонентов с большим количеством выводов, – импорт таблицы выводов из PDF-файла описания компонента (datasheet). Library Builder успешно решает эту задачу с учетом того, что таблица выводов в PDFфайле может занимать несколько листов или содержать несколько значений в одной ячейке.

АВТОМАТИЗИРОВАННОЕ СОЗДАНИЕ УГО

Рассмотрим процесс создания символа электронного компонента с помощью программы OrCAD Library Builder на примере российской 42-выводной микросхемы 1886BE5; описание ее выводов приведено в PDFфайле (рис.1). По умолчанию OrCAD Library Builder можно найти через меню "Пуск" (папка Cadence-Release 17.2-OrCAD Products – Library Builder).

Для начала нужно зайти в общие настройки Settings – Part Libraries (рис.2). На закладке Library Builder можно указать путь по умолчанию для создания новых проектов, а также папку с 3D-моделями в формате STEP (STEP Export Directory). Следует указывать те же папки, с которыми работает редактор печатных плат (параметр steppath в Setup – User Preferences редактора OrCAD/ Allegro PCB Editor).

¹ OOO "ΠCБ COΦT", panov@pcbsoft.ru

Номер вывода корпуса	Контактная площадка кристалла	Обозначение вывода	Тип вывода	Назначение выводов
42	44	OSC1	вход	Вход для сигналов тактовой синхронизации, от внешнего кварцевого генератора или резонатора
1	1	OSC2	выход	Выход обратной связи для внешнего кварцевого резонатора
Порт А ввода/в	Е – пара ывода	ллельный двунапра	вленный порт	Дополнительное назначение выводов:
3	3	PA0/INT	вход	Вывод порта А, разряд 0/ Вход внешнего прерывания. Только входной контакт
4	4	PA1/T0CLK	вход	Вывод порта А, разряд 1/ Вход тактового сигнала для таймера 0 и внешнего прерывания (TOCKIF). Только входной контакт
5	5	PA2/RX/DT	вход/выход	Вывод порта А, разряд 2/ Вход асинхронного приемника/ Вход (выход) линии данных в синхронном режиме USART
6	6	PA3/TX/CK	вход/выход	Вывод порта А, разряд 3/ Выход асинхронного передатчика/ Вход (выход) тактовых импульсов е синхронном режиме USART
7	7	PA4	вход/выход	Вывод порта А, разряд 4
8	8	PA5	вход/выход	Вывод порта А, разряд 5
Порт С	– паралл	ельный двунаправл	тенный порт	Дополнительное назначение
ввода/в	ывода со	вмещен с АЦП		выводов:
11	13	PC0/ADC0/Vref+	вход/выход	Двунаправленный порт общего назначения разряд 0/Аналоговый канал 0 АЦП/ Вход верхнего опорного напряжения АЦП
12	14	PC1/ADC1/Vref-	вход/выход	Двунаправленный порт общего назначения разряд 1/Аналоговый канал 1 АЦП/ Вход нижнего опорного напряжения АЦП
15	17	PC2/ADC2	вход/выход	Двунаправленный порт общего назначения разряд 2/Аналоговый канал 2 АЦП/
16	18	PC3/ADC3	вход/выход	Двунаправленный порт общего назначения разряд З/Аналоговый канал З АЦП/
17	19	PC4/ADC4	вход/выход	Двунаправленный порт общего назначения разряд 4/Аналоговый канал 4 АЦП/
18	20	PC5/ADC5	вход/выход	Двунаправленный порт общего назначения разряд 5/Аналоговый канал 5 АПП/

Рис.1. Описание микросхемы 1886BE5 в формате PDF

В строке STEP Part Browser прописывается путь к программе для просмотра 3D-моделей. На закладке **Symbol Exports** выбираются стиль для оформления символов, настройку которого рассмотрим ниже, и папка, куда по умолчанию предлагается сохранять экспортированные в схемный редактор OrCAD Capture символы. На закладке Layout Exports указываются пути к папкам с контактными площадками и посадочными местами,

ł.		S	etup Form			?
ibrary Builder	Symbol Exports	Layout Exports	PCB Settings	Table Headings	Directory Setup	
	Projects Defai D:\Programs\ B	ult Path Cadence\SPBData\B rowse	uilderProjects;			
STEP Part Bro	wser				В	rowse
Step Export Dir	ectory D:\Prog Configur	rams\Cadence\SPBD	oata\STEP		Cor	nfigure
		Save	Cancel			

Номер вывода корпуса	Контактная площадка кристалла	Обозначение вывода	Тип вывода	Назначение выводов
19	21	PC6/ADC6	вход/выход	Двунаправленный порт общего назначения разряд 6/Аналоговый канал 6 АЦП/
20	22	PC7/ADC7	вход/выход	Двунаправленный порт общего назначения разряд 7/Аналоговый канал АЦП/
Порта І	D – парал ывода со	лельный двунапра вмешен с Timer12	вленный порт	Дополнительное назначение выводов:
23	25	PD0/CAP1	вход/выход	Двунаправленный порт общего назначения, разряд 0/Вход схемь
24	26	PD1/CAP2	вход/выход	захвата 1 Двунаправленный порт общего назначения, разряд 1/Вход схемь захвата 2
25	27	PD2/PWM1	вход/выход	Двунаправленный порт общего назначения, разряд 2/Выход схемы ШИМ 1
26	28	PD3/PWM2	вход/выход	Двунаправленный порт общего назначения, разряд 3/Выход схемы ШИМ 2
27	29	PD4/T1CLK	вход/выход	Двунаправленный порт общего назначения, разряд 4/ Вход внешней тактовой частоты Timer 1
28	30	PD5/T2CLK	вход/выход	Двунаправленный порт общег назначения, разряд 5/ Вход внешней тактовой частоты Timer 2
29	31	PD6	вход/выход	Двунаправленный порт общего назначения, разряд 6
30	32	PD7	вход/выход	Двунаправленный порт общего назначения разряд 7
Порта І	Е – парал	лельный двунапра	вленный порт	Дополнительное назначение
33	35	PE0	вход/выход	Двунаправленный порт общего
34	36	PE1	вход/выход	Авунаправленный порт общего назначения, разряд 1
35	37	PE2	вход/выход	Двунаправленный порт общег назначения, разряд 2
36	38	PE3	вход/выход	Двунаправленный порт общего назначения, разряд 3
Интерф	ейс CAN	CAN TY	PL WOR	
39	42	CAN_TA	выход	Вход контроллера интерфейса САN
Питани	е и упра	вление		
9, 22, 32, 41	9, 24, 34, 43	Ucc	напряжение питания	Питание ядра микроконтроллера кристалла
14	16	AU _{cc}	напряжение питания	Питание АЦП микроконтроллера кристалла
2, 10, 21, 31	2, 10, 23, 33	GND	общий	Общий
13	15	AGND	общий	Общий АЦП
Номер вывода корпуса	Контактная площадка кристалла	Обозначение вывода	Тип вывода	Назначение выводов
38	40	TEST	вход	Вывод, используемый при тестирования микросхемы
37	39	nMCLR	вход	Вход внешнего сброса кристалла

которые использует PCB Editor, и к папке для их извлечения в САПР (параметры padpath и psmpath в User **Preferences** редактора PCB).

11, 12

Вход внешнего сбро

Не используются

Это основные настройки, которые следует выполнить в данном меню. Сохраняем их с помощью кнопки Save.

Приступаем к созданию символа с помощью команды File-New-Symbol from PDF. В открывшемся окне (рис.3) нужно указать название нового компонента, располо-

9.		Create New Project	? ×	
	Part Name	1886BE5		Рис.3.
	Project Location			Окно
	C:\Users\Bam Ma	acDuck\Desktop\SymbolFromPDF\1886BE5 v	Browse	ORITO
				создания
	Select PDF File	n MacDuck\Desktop\SymbolFromPDF\1886BE5.pdf	Browse	нового
	Use Symbol C	reation Assistant to create symbol		
		OK	Cancel	символа
		UN		УГО

Рис.4. Рабочее окно Library Builder с отображением PDF-файла описания компонента (datasheet)

жение создаваемых файлов и выбрать PDF-файл, который будет загружен в программу. Также можно включить мастер-помощник создания компонентов, отметив пункт Use Symbol Creation Assistant to create symbol.

После нажатия на **OK** будет создан проект компонента и в окне программы откроется выбранный PDF-документ (рис.4). Для переключения между PDFдокументом, таблицей выводов (**ScratchPad**), изображением символа и посадочного места компонента используются кнопки из стандартной панели, расположенной сверху (рис.5). (Если по какой-то причине вы их не видите, проверьте наличие панели через **View-Toolbars-Standard**.)

Найдем в PDF-файле таблицу выводов и выберем команду Select Area из панели PDFExtraction (рис.6).

Рис.5. Кнопки для переключения между PDF-файлом, таблицей выводов, УГО и посадочным местом

Рис.6. Панель работы с PDF-файлом PDFExtraction

(На этом рисунке она представлена в горизонтальном варианте для удобства отображения, а на рисунке 4 расположена вертикально вдоль левого края.)

Нам предложат выбрать формат данных, которые мы собираемся извлечь из документа (рис.7). Первый вариант предполагает таблицу выводов, при этом данные из PDF-файла переносятся автоматически, второй и третий – различные виды диаграмм для BGAкомпонентов, четвертый – позволит указать количество

2	Select Ar	ea ?	×
● Table /	Pin Out Diagram		
O BGA Ma	ap 🔲		
O BGA Se	ection Map		
Total N (Inc	umber of Rows Iuding all BGA Sections)	Columns	
O Define I	Boundary		
	OK	Cancel	

Рис.7. Выбор формата данных (типа таблицы выводов) в PDF-файле

www.electronics.ru

	Data	a Preview		
Extract	Clear Data	Flip Rows with Cols	Mirror Columns	

108 212/40 .78 :010	2-00.0-00 :,2104.0e	127-003-03 2102240	0: 2102/40	07-003-03 21027472
42	44	OSC1	2E>4	-E>4 4;0 A83=0;>2 B0:B>
1	1	OSC2	2KE>4	-KE>4 >1@0B=>9 A2078
>@B A 22>40/2K2>40	1.	?0@0;;5;L=K9 42C=0?@	?>@B	~>?>;=8B5;L=>5 =07=0G
	3	PA0/INT	2E>4	-K2>4 ?>@B0 -, @07@0
4	4	PA1/TOCLK	2E>4	-K2>4 ?>@B0 -, @07@0
5	5	PA2/RX/DT	2E>4/2KE>4	-K2>4 ?>@B0 -, @07@0
6	6	PA3/TX/CK	2E>4/2KE>4	-K2>4 ?>@B0 -, @07@0
7	7	PA4	2E>4/2KE>4	-K2>4 ?>@B0 -, @07@0
8	8	PA5	2E>4/2KE>4	-K2>4 ?>@B0 -, @07@0
>@B C 22>40/2K2>40	•	?0@0;;5;L=K9 42C=0?@	?>@B	~>?>;=8B5;L=>5 =07=0G
11	13	PC0/ADC0/Vref+	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@
12	14	PC1/ADC1/Vref-	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@
15	17	PC2/ADC2	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@
16	18	PC3/ADC3	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@
17	19	PC4/ADC4	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@
18	20	PC5/ADC5	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@

Рис.8. Окно **Data Preview** с предварительной таблицей выводов

столбцов и строк в новой таблице. Нам подходит первый вариант, выбираем и обводим курсором первую часть таблицы в PDF-файле. Извлеченные данные появятся в окне **Data Preview** справа (рис.8). При необходимости можно поменять местами строки со столбцами или переставить столбцы в обратной последовательности, отмечая пункты **Flip Rows with Cols** или **Mirror Columns** (см. рис.8).

Следует отметить, что программа не поддерживает русские символы, но корректную нумерацию и обозначения на английском языке можно ввести на следующем шаге, удалив лишнюю информацию. Убедившись, что данные на странице выделены верно, нажимаем кнопку **Extract**, после этого сведения о выводах будут переданы в общую таблицу **ScratchPad**. Извлеченную информа-

-Select-	-Select-	-Select-	-Select-	-Select-
><5@	→>=B0:B	1>7=0G5=85 2K2>40	8? 2K2>40	07=0G5=85 2K2>4>2
42	44	OSC1	2E>4	-E>4 4;0 A83=0;>2 B0:B>2>9 A8=E@>=87
1	1	OSC2	2KE>4	-KE>4 >1@0B=>9 A2O78 4;O 2=5H=53> :
>@B	1.	?0@0;;5;L=K9 42C=0?@02;5==K9	?>@B	~>?>;=8B5;L=>5 =07=0G5=85 2K2>4>2:
3	3	PA0/INT	2E>4	-K2>4 ?>@B0 -, @07@O4 0/ -E>4 2=5H=
4	4	PA1/TOCLK	2E>4	-K2>4 ?>@80 -, @07@04 1/ -E>4 80:B>2
5	5	PA2/RX/DT	2E>4/2KE>4	-K2>4 ?>@80 -, @07@04 2/ -E>4 0A8=E
6	6	PA3/TX/CK	2E>4/2KE>4	-K2>4 ?>@B0 -, @07@O4 3/ -KE>4 0A8=
7	7	PA4	2E>4/2KE>4	-K2>4 ?>@B0 -, @07@O4 4
8	8	PA5	2E>4/2KE>4	-K2>4 ?>@B0 -, @07@O4 5
>@B	4	?0@0;;5;L=K9 42C=0?@02;5==K	?>@B	~>?>;=8B5;L=>5 =07=0G5=85 2K2>4>2:
11	13	PC0/ADC0/Vref+	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@B >1153> =07=0G
12	14	PC1/ADC1/Vref-	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@B >1I53> =07=0G
15	17	PC2/ADC2	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@B >1I53> =07=0G
16	18	PC3/ADC3	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@B >1153> =07=0G
17	19	PC4/ADC4	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@B >1I53> =07=0G
18	20	PC5/ADC5	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@B >1I53> =07=0G
><5@	→>=B0:B	1>7=0G5=85 2K2>40	8? 2K2>40	07=0G5=85 2K2>4>2
19	21	PC6/ADC6	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@B >1153> =07=0G
20	22	PC7/ADC7	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@B >1I53> =07=0G
>@B0	D -	?0@0;;5;L=K9 42C=0?@02;5==K	?>@B	~>?>;=8B5;L=>5 =07=0G5=85 2K2>4>2:
23	25	PD0/CAP1	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@B >1153> =07=0G
24	26	PD1/CAP2	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@B >1153> =07=0G
25	27	PD2/PWM1	2E>4/2KE>4	~2C=0?@02;5==K9 ?>@B >1153> =07=0G
20	20	000/04/40	OF AVOIDS A	~20 030005 K0 3 00 1153 07 00

Рис.9. Полная таблица выводов в ScratchPad

	1	P	
40	1	V	

Рис.10. Кнопка перехода к таблице ScratchPad

цию можно редактировать в окне предварительного просмотра **Data Preview** с помощью команд из панели **PDFExtraction**. Например, можно добавлять, удалять и перемещать строки или столбцы, но проще выполнять эту работу в **ScratchPad**. Повторив выделение и извлечение данных для частей таблицы с различных листов PDFфайла, получим полную таблицу выводов в **ScratchPad** (рис.9). Переход к **ScratchPad** выполняется путем нажатия соответствующей кнопки (рис.10).

В PDF-файле можно выделять не все, а только несколько столбцов из таблицы (например, все столбцы, кроме "Назначение выводов"). В нашем же случае были загружены все столбцы, теперь нужно удалить строки и столбцы, информация в которых не используется при создании символа либо отображается некорректно. Для этого можно выделить нужную ячейку и в меню, вызываемом щелчком правой кнопки мыши (ПКМ), выбрать пункты **Delete Row(s)** или **Delete Column**. Если необходимо сохранить информацию о направлении сигналов вывода, можно использовать команду глобальной автозамены **Edit – Find/Replace** и поменять выражение **E>4/2KE>4**, соответствующее обозначению вход/выход (из-за некорректной конвертации с рус-

Number	Pin Name	Direction	
42	OSC1	1	
1	OSC2	0	
3 PA0/INT		1	
4	PA1/TOCLK	1	
5	PA2/RX/DT	Bidir	
6	PA3/TX/CK	Bidir	
7	PA4	Bidir	
8	PA5	Bidir	
11	PC0/ADC0/Vref+	Bidir	
12	PC1/ADC1/Vref-	Bidir	
15	PC2/ADC2	Bidir	
16	PC3/ADC3	Bidir	
17	PC4/ADC4	Bidir	
18	PC5/ADC5	Bidir	
19	PC6/ADC6	Bidir	
20	PC7/ADC7	Bidir	
23	PD0/CAP1	Bidir	
24	PD1/CAP2	Bidir	
25	PD2/PWM1	Bidir	
26	PD3/PWM2	Bidir	
27	PD4/T1CLK	Bidir	
28	PD5/T2CLK	Bidir	
29	PD6	Bidir	
30	PD7	Bidir	
33	PE0	Bidir	
34	PE1	Bidir	
35	PE2	Bidir	
36	PE3	Bidir	
40	CAN_TX	0	
39	CAN_RX	1	
9, 22, 32, 41	UCC		
14	AUCC		
2, 10, 21, 31	GND		
13	AGND		
38	TEST	1	
37	nCLR	1	

Рис.11. Подготовленная таблица выводов ского языка), на **Bidir**, что означает двунаправленные выводы в программе Cadence OrCAD Capture. Точно так же можно поступить с остальными выводами, используя обозначения Input, Output, NC, Ground, **Analog**. Не обязательно делать это на данном этапе – на следующем шаге Library Builder поможет заполнить все верно. Сейчас же укажем из выпадающих списков в заголовках столбцов их название, поменяем нечитаемые значения на понятные нам (I – Input, O – Output) и подготовим предварительную таблицу выводов (рис.11).

Рис.12. Окно контроля и исправления ошибок в таблице выводов

Теперь передадим эту информацию непосредственно в сим-

вол компонента командой **Copy Data to Symbol View** из меню **Data**. Если все сделано верно, сразу же запустится проверка на ошибки, и мы увидим окно для их исправления (рис.12).

Начиная со списка слева, где указана ошибка о том, что направление вывода указано неверно, видны информация о строках с ошибками, подробное объяснение, текущее значение параметра и предложенный вариант решения. Можно поменять значение (действие Change Value) на выбранное значение из списка. Меняем I на принятое в программе Input, нажимая Apply Select. Потом меняем O на Output, для цепей земли указываем значение Ground, для питания – Power. Аналогичным

		Number	Pin Name	Direction	Function	Pin Group
Þ	1	1		Output		
	2	2	GND_1	Ground		
	3	3	PA0/INT	Input		
	4	4	PA1/TOC	Input		
	5	5	PA2/RX/	Bidir		
	6	6	PA3/TX/	Bidir		
	7	7	PA4	Bidir		
	8	8	PA5	Bidir		
	9	9	UCC_1	UNSPEC		
	10	10	GND_2	Ground		
	11	11	PC0/ADC	Bidir		
	12	12	PC1/ADC	Bidir		
	13	13	AGND	Ground		
	14	14	AUCC	UNSPEC		
	15	15	PC2/ADC2	Bidir		
	16	16	PC3/ADC3	Bidir		
	17	17	PC4/ADC4	Bidir		
	18	18	PC5/ADC5	Bidir		
	19	19	PC6/ADC6	Bidir		
	20	20	PC7/ADC7	Bidir		
	21	21	GND_3	Ground		
	22	22	UCC_2	UNSPEC		
	23	23	PD0/CAP1	Bidir		
	24	24	PD1/CAP2	Bidir		
	25	25	PD2/PW	Bidir		
	26	26	PD3/PW	Bidir		

Рис.13. Исправленный и верифицированный список выводов

образом исправляем предупреждения об отсутствии направления сигнала у выводов и обозначения их функционального назначения.

Помимо этого, программа укажет на дублированные названия выводов. В некоторых случаях можно оставить все как есть, выбрав соответствующие пункты из предложенных вариантов (Accept pin direction, Accept duplicate pin name, Accept empty pin function и т.д.). В нашем случае позволим программе добавить автонумерацию в названия, чтобы исключить дублирование имен выводов.

Программа автоматически разнесет выводы, перечисленные через запятую, на отдельные строки. Командой **Data – Sort** можно отсортировать выводы по выбранному параметру. В итоге мы получим исправленный список (рис.13). Самостоятельно редактировать значения в ячейках таблицы можно в режиме **Edit Symbol Table** (рис.14). Переключившись в режиме **Edit Symbols Graphics**, получим доступ к командам размещения выбранных выводов с той или иной стороны символа или в указанное курсором место (рис.15).

Рис.14. Режим ручного редактирования значений в ячейках таблицы выводов

Рис.15. Кнопки размещения выводов

E	Style Editor - Current	Style Set to my1
Styles		
Symbol Styles		
my1	✓ Save	: Style
Pin Grid	1 ~	Part Reference U?
Pin Wisker	1 🗸	PCB Footprint ?
Left Right Space	2	Description ? Name mvValue
Top Bottom Space	4	
Body Width Min	6	
Body Height Min	4	
Body Text Height	64	
Body Property Height	30	Proportion
Pin Number Height	50	Name
Pin Number Offset X	50	Veha
Pin Number Offset Y	25	value
Pin Name Height	50	Label Type
Pin Name Offset X	0	Relative Origin
Pin Name Offset Y	0	Offset Height
Pin Name Offset Add	50	Justify 🗸 🗸
Exp_Colors		Visibility
Exp_Font_Name	0	
Exp_Body_Color	0	Color Code (EDA Exports Specific)
Exp_Body_Label_Color	0	
Exp_Body_Property_Color		Accept Changes New Property
Exp_Pin_Color		Delete Property
Exp_Pin_Label_Color		
Exp_Pin_Property_Color		
		-

Рис.16. Настройка параметров символа по умолчанию

В этот момент стоит сохранить выполненную работу и временно закрыть символ командой File – Close. После этого появится доступ к настройкам символов по умолчанию Settings – Symbol Style Settings (рис.16). В левой части окна настройки (см. рис.16) можно устанавливать различные параметры символов, в том числе:

- условный шаг сетки для размещения выводов;
- относительную длину выводов;
- расстояние от крайних выводов до левой/правой границы;
- расстояние от крайних выводов до верхней/нижней границы символа;

	PC5/A	Auto Assign by Rules
	PC6/A	Assign to Left
	PC7/A	Assign to Right
21	GND_	Assign to Top
22	UCC_2	Assign to Pottom
23	PD0/C	
24	PD1/C	
25	PD2/P	Swap Selected
26	PD3/P	Make Injected/Hidden
27	PD4/T	Make Uninjected / Unhidden
28	PD5/T	Select Pins and Drop
29	PD6	Sort
30	PD7	Edit Table Data

Рис.17. Меню для размещения выводов, вызываемое ПКМ

Рис.18. Меню, вызываемое нажатием ПКМ на изображении символа

- минимальную ширину символа;
- минимальную высоту символов;
- высоту шрифта у текста символа;
- высоту шрифта у свойств символа;
- высоту шрифта у номера вывода;
- смещение положения номера относительно конца вывода по оси Х;
- смещение положения номера относительно конца вывода по оси Y;
- высоту текста у имени вывода;
- смещение положения названия относительно вывода по оси X;
- смещение положения названия относительно вывода по оси Y;
- дополнительное смещение для имени у выводов с графикой.

В правой части окна настройки (см. рис.16) перечислены свойства символа и их характеристики: название, значение, тип, положение точек привязки у текста и у графики символа, относительно которой свойство будет размещаться. Кроме того, можно изменить видимость параметра.

После установки всех параметров сохраним их и откроем вновь наш символ. Разместим выводы на символе, используя команду из панели инструментов **Symbol View** или из меню, вызываемого щелчком ПКМ (рис.17).

В этом меню есть команда автоматического размещения выводов на символе в зависимости от их функционального значения (Auto Assign by Rules), предусмотрена возможность погасить выводы (Make Hidden) или разместить их вручную (Select Pins and Drop). После размещения можно также вручную перетаскивать выводы на символе в режиме редактирования графики. Или поменять свойства символа, вызвав меню путем нажатия ПКМ на изображении символа и выбрав пункт Edit Symbol Properties (рис.18).

> Если символ имеет несколько секций, воспользуйтесь командой Configure Symbol Section, предварительно создав новую секцию через панель инструментов Symbol View (рис.19). В нашем случае этого не требуется. Включение и выклю-

Рис.19. Меню создания дополнительных секций компонента

СИСТЕМЫ ПРОЕКТИРОВАНИЯ

чение сетки, а также задание размеров символа выполняется на небольшой панели, расположенной справа от рабочей области.

В описании микросхемы имеется рекомендованный символ. Сделаем похожий символ, используя все рассмотренные выше инструменты (рис.20). Выводы земли и питания размножим в соответствии с правилами создания схем.

Готовый символ попробуем экспортировать в редактор OrCAD Capture, выполнив команду File – Export_OrCAD Capture Symbols. Можно выбрать следующие опции: экспортирование свойств без значений

Рис.21. Экспорт созданного символа в OrCAD Capture

Not Visible), замена существующего символа в библиотеке (Replace Part In Library) и открытие в Capture нового символа (Open Capture After Export) (рис.21). После открытия символа в OrCAD Сарture видно, что форматирование текста, положение номера и пози-

и как невидимые (Export Properties

with No Properties with No Value as

текста, положение номера и позиционирование названия выводов не сохранились. Также при отсутствии в Capture необходимых настроек по умолчанию нам понадобится заменить шрифты на поддерживающие русский язык и соответствующие ГОСТ. Добавим разделительные линии и увеличим ширину символа. В итоге получим символ, соответствующий описанию компонента в части нумерации и названия выводов (рис.22).

АВТОМАТИЗИРОВАННОЕ СОЗДАНИЕ ПОСАДОЧНОГО МЕСТА

Теперь рассмотрим процесс создания посадочного места. В Library

	DD?		<i> </i>
42 38 37 3	OSC1 1886ÅÅ5 OSC2 TEST OSC2 nCLR PA2/RX/DT	1	42 OSC1 18868E5 OSC2 1 38 TEST DAVID F PA2/RX/DT 5 1 PA0/INT PA2/RX/DT 5 4 PA0/INT PA2/RX/DT 6 4 PA1/TOCLK PA4 7 PA4 7
4 39	PAU/INT PA3/TX/CK PA1/T0CLK PA4 PA5 CAN_RX		32 CANLRX CANLTX 40 PCD/ADDO/Viref- 17
· ·	CAN_TX PC0/ADC0/Vref+ PC1/ADC1/Vref-	11 12	PCI/ADC/Viref PC2/ADC26 PC2/ADC26 PC2/ADC36 PC2/ADC36 PC2/ADC38 PC2/ADC38 PC2/ADC38
· ·	PC2/ADC2 PC3/ADC3 PC4/ADC4 PC5/ADC5	15 16 17 18	PLD/AUL6 _20 PC7/ADC7 _20 PD1/CAP1 _23 PD1/CAP2 _24 PD1/CAP2 _25 PD2/CAP2 _25
• •	PC6/ADC6 PC7/ADC7 PD0/CAP1	20	2 GND_1 PD3/PWN2_C 9 GND_1 PD3/PWN2_C 10 GND_2 PD4/TILLK_28 13 GND_2 PD5/12UK_28 14 AURO PD6 21 AURO PD6
2	PD1/CAP2 PD2/PWM1 GND_1 PD3/PWM2 UCC_1 PD4/T1CLK<	24 25 26 27	22 UUC3 PU/1 33 31 UUC2 PEO 34 32 UUC3 PEO 34 41 UUC3 PEO 34 42 UUC3 PE2 36 41 UUC4 PE3 36
10 13 14 21	GND_2 PD5/T2CLK AGND PD6 AUCC GND 3 PD7	28 29 . <u>3</u> 0 .	Рис.22. Символ компо-
22 31 32 41	UCC_2 PE0 GND_4 PE1 UCC_3 PE2 UCC_4 PE3	33 34 35 36	нента в OrCAD Capture до (слева) и после (справа) окончательных

(справа) окончателы исправлений

СИСТЕМЫ ПРОЕКТИРОВАНИЯ

Рис.23. Окно выбора типа корпуса микросхемы

Builder перейдем в закладку **Footprint View** и нажмем на закладку **Component**. Откроется окно выбора типа корпуса микросхемы, где выберем **Surface Mount** – **CQFP** (рис.23).

Рис.24. Габаритный чертеж корпуса микросхемы

Опишем параметры посадочного места согласно габаритному чертежу микросхемы (рис.24) с учетом того, что посадочное место создается без формовки или подрезки выводов. В списке параметров укажем единицы измерения (Units) и форму площадок (Pad Shape), откажемся от реперных знаков вокруг микросхемы (Fiducial) и выберем угол поворота (Body Orientation) (рис.25).

Затем укажем количество (Pin A – сверху/снизу, Pin B – слева/справа) и шаг выводов (Pin Pitch). Введем максимальные размеры выводов (L1/L2 max). Минимальные их размеры на габаритном чертеже не указаны, поэтому выберем такие же (L1/L2 min). Рассчитаем с учетом допуска габариты корпуса (A, B min/max) и длину выводов (T min/max) как половину разницы между максимальным габаритом (по концам выводов) и габаритом корпуса. Укажем также ширину выводов (W min/max).

Ces	Units	mm	
eren	Family	CQFP	
Pref	Terminal	GullWing	
Ħ	Pad Shape	Round_Rectangle	
onel	Pad Shape Pin 1	Oblong	
duo	Fiducial		
0	Body Orientation	R0	
IBW	Pin Pitch	1.0000	
N Pu	Pins A	9	
La	Pins B	12	
۱	L1 Min	20.3000	
/IBW	L1 Max	20,3000	
de /	L2 Min	20,3000	
ŝ	L2 Max	20,3000	
les	A Min	12,3000	
B	A Max	11,8000	
8	B Min	12,3000	
aftin	B Max	11,8000	
ā	T Min	4,0000	
litor	T Max	4,2500	
τĒ	W Min	0,3000	
arian	W Max	0,3700	
>	T Thermal (Length / DY)	0.0000	

Рис.25. Таблица описания размеров корпуса микросхемы

Рис.26. Автоматически сгенерированное посадочное место

XP	'inTool 👔 Info 💿 PadTool Re	Pad Stack Sequence Form
-	Toggle Non-Propagated	Assign Pin Numbers
	Toggle Electrical / Mechanical	Clear Selected Numbers X Clear All Numbers
→ 1 2	Order Pin Numbers - Variant	1 Click Pin to Sequence Accept Changes
77	Add Pin - Variant	Undo/Cancel Form
	Annotate Footpint to Symbol	••

Рис.27. Варианты изменения нумерации выводов

После ввода всех параметров нажмем кнопку Generate и получим посадочное место, соответствующее габаритному чертежу на микросхему (рис.26).

Главное из того, что осталось сделать, – поменять нумерацию, поскольку первый вывод у микросхемы дол-

27	Identify Layer(s)	9	Pad Sta	ck Mapping
	Identify Selected	Variant P	ad Stack(s)	Generated Pads
	Layers Pad Stack Calculator			r500_50c10m520_70p490_4 b500_50c10m520_70p490_4
	Pad Stack Mapping			
	Set Origin			
	Done Full View	37 38 39 40 41 42 1 2 3 4 5 6 7 8	Pin Numbe Pad Name New Pad Nam Pin Rotation Pin Rotation Pin Rotation	r 37 : b500_50c:10m520_70p490_40 e r500_50c:10m520_70p490_ R0 v elected Unselect Pins Mapping and Rotation to Pin
Рис.29. Вы	бор другого	Map by Se Pad Nam	elected Set r500_50c	10m520_70p490_40 ping to All Selected Pins
гипа плоц	алки			

жен находиться в середине левой стороны, а в шаблоне, который мы использовали, он находится слева наверху. Для этого активируем команду Order Pin Numbers из меню **PinTool** над рабочей областью и пронумеруем выводы начиная с первого, выбрав команду Click Pin to Sequence и нажимая на них в порядке возрастания нумерации (рис.27).

Кроме этого, нужно перенести маркер первого вывода, который указывается в слое шелкографии. Включим отображение этого слоя и возможность выделения в нем объектов. Откроем меню Layer над рабочей областью, отметим два пункта напротив silk_top и отключим возможность выделения выводов (**Body Only**), чтобы они не мешали. После этого выделим в посадочном месте появившийся маркер первого вывода и используем команду Move – Any с закладки Variant Editor. Эта

Preferences	Front View S	Bide View ate STEP
Component	H Max (Height body) K Height (Body offset) K Width (Body offset taper)	3,0000 0,2000 0,0000
Land View	Thru Hole Wire Length	0,0000
Side View(s)		

Рис.31. Привязка 3D-модели к посадочному месту и проверка соответствия

Рис.30. Меню генерации 3D-модели в формате STEP

команда позволит передвинуть маркер в виде круга к текущему первому выводу (рис.28).

Уберем оставшуюся сильно закругленную форму у крайней площадки, которая в шаблоне была назначена первым выводом, но больше им не является. Включим возможность выделения площадок в меню Layer (Pin Only/Both), выделим и нажмем на ней ПКМ, а затем в открывшемся меню выберем Pad Stack Mapping. В этом меню можно выбрать второй из доступных в посадочном месте падстеков (наборов площадок и отверстий) и назначить его выбранному выводу путем нажатия на кнопку Apply Mapping to All Selected Pins (рис.29).

Осталось указать параметры 3D-модели на закладке Side View(s) и сгенерировать STEP-модель (Generate STEP) (рис.30). После этого необходимо связать посадочное место с символом командой Info-Annotate Symbol to Footprint и проверить их соответствие посредством команд из соседней закладки Reports (рис.31).

Теперь можно выполнить экспорт в Allegro (File-Export-OrCAD PCB/Allegro Export) со следующими настройками:

Allegro Exp	port Form	
3D Step Model Attachment		
Allegro Export	STEP1CQFP100P2030X2030X300-42N.step	
Allegro Export Path ts \1886BE5\1886BE5\CQFP100P203	30X2030X300-42N\CQFP100P2030X2030X300-42N_Allegro	
Export Options Image: Clean Allegro Export Directory of Draw/Pad Files Image: Clean Allegro after exporting.	Thermal Pad Export Options As a Shape - do not create Pad Stack. 	
Export Fudicials as Pad Stack.	Mechanical Pad Export Options As a Shape - Do not create a Pad Stack. As a Mechnical Pad Stack.	
Ihrough Hole Thermal Pad Export Option Check to export calculated thermal on thru hole pads. Note - For use on boards with negative planes.		
Allegro Export		
View Script File	Release to Allegro Library Cancel	

Рис.32. Экспорт созданного посадочного места в библиотеку OrCAD/Allegro

Рис.33. Готовый библиотечный элемент – посадочное место (слева) и 3D-модель (справа)

- очистка директории, куда производится экспорт, от предыдущих файлов (Clean Allegro Export Directory...);
- запуск редактора посадочного места после экспорта (Invoke Allegro after exporting);
- экспорт реперных знаков в виде падстеков (Export Fudicials as Pad Stack);
- экспорт термальных площадок в виде электрических падстеков (Thermal Pad Export Options – Electrical Pad Stack);
- экспорт механических площадок в виде механических падстеков (Mechanical Pad Export Options – As a Mechanical Pad Stack).

Указываем путь для экспорта и выбираем, какую STEP-модель следует использовать в посадочном месте (рис.32). В итоге в Allegro получаем готовое посадочное место и привязанную к нему 3D-модель (рис.33).

Заметим, что для примера мы умышленно взяли компонент с "нестандартным" корпусом, шаблон для которого пока не предусмотрен в программе, чтобы показать, как можно не только создать компонент на основе шаблона, но и при необходимости его модифицировать, если шаблон не совсем подходит.

Примечание: Перед первым экспортом символа компонента следует убедиться в правильной настройке переменной среды **PATH**. В нашем случае она будет указывать программе Library Builder, где находится OrCAD Capture для его автоматического запуска в процессе экспорта. Для этого откройте список переменных среды Windows (Система – Дополнительные параметры системы – Переменные среды...), найдите переменную **PATH**, перейдите к ее редактированию и при необходимости добавьте в нее путь вида **<папка установки 17.2>\tools\bin** или %**CDSROOT**%**\tools\bin**. Сохраните изменения, нажав **OK**.