

Инструменты повторного использования блоков схем и топологий в Capture CIS и Allegro PCB Editor

г.Москва, 105082, ул. Б. Почтовая, д. 26В, строение 2 pcbsoft.ru 2017 г.

Оглавление

Введение	3
Загрузка материалов	3
Варианты модулей для повторного использования	4
Подготовка проекта	4
Создание проекта	5
Создание иерархического компонента	6
Создание повторяемого модуля	8
Создание списка цепей в Capture	8
Создание топологии для повторяемого модуля	8
Применение повторяемого модуля	9
Размещение иерархического символа	10
Аннотация вложенного/основного проектов	11
Создание списка цепей и платы	12
Размещение модулей на плате	13
Поддержка	14
Обратная связь	14

Инструмент повторного использования в OrCAD® Capture – Allegro® PCB Editor позволяет сохранять части готовых схем и топологий для дальнейшей их вставки в различные проекты без необходимости выполнять работу по рисованию схемы, трассировке или размещению повторно. Например, схема питания, не меняющаяся от проекта к проекту, может быть сохранена и использована как отдельный модуль с готовой схемой и топологией.

Для быстрого освоения материала с данной инструкцией поставляется набор материалов, на примере которого будет рассмотрен весь маршрут создания повторяемых модулей:

- 1. Создание законченного модуля в схеме и библиотеке.
- 2. Создание соответствующей ему топологии.
- 3. Повторное использование модуля в схеме и на плате.

В наборе присутствует папка **LAB**, в которой есть все необходимые материалы, в папке **designfiles** содержаться готовые проекты схемы и топологии, повторяемые модули (**.MDD**), с которыми можно сравнить правильность выполнения самостоятельных действий.

Для получения дополнительной информации можно ознакомиться с главами «Design Reuse for PCB Editor» в официальной справке «Capture User Guide».

Загрузка материалов

Все сопутствующие файлы для данной инструкции вы можете найти в разделе «Инструкции» на сайте российского дистрибьютора продуктов Cadence - <u>pcbsoft.ru</u>. Либо на <u>официальном сайте поддержки</u> Cadence.

Повторяемые модули могут быть выполнены в двух видах, либо как иерархический блок (**H-block**), либо как иерархические компонент (**H-part**).

1. **Иерархический блок:** может быть размещен на схеме с помощью команды **Place-Hierarchical block**. H-block выступает в роли ссылки на страницу схемы и не требует оформления его как отдельного библиотечного элемента.

2. **Иерархический компонент:** создается в виде элемента библиотеки с использованием команды **Generate Part**. В дальнейшем используется наравне с остальными компонентами схемы.

Подготовка проекта

В первую очередь необходимо убедиться, что схема и печатная плата синхронизированы и полностью соответствуют друг другу. Для этого нужно:

- Провести аннотацию в схеме, чтобы исключить наличие дублирующихся позиционных обозначений.
- Запустить DRC, при наличии ошибок или предупреждений исправить их.
- Создать печатную плату.
- Выполнить размещение и трассировку.
- Загрузить изменения из платы в схему, например, информацию о свапировании выводов или гейтов.

В схемах **bot1.dsn** и **bot2.dsn**, поставляемых с инструкцией, уже проведена аннотация и проверка на ошибки. Остается подготовить проект, список цепей и топологию для создания повторяемого модуля (MDD-файла), а затем использовать модуль в основном проекте.

Создание проекта

Создание проекта будет выполняться на примере простой тестовой схемы, приложенной к инструкции, чтобы убедиться что она подходит для работы, выполним следующие шаги:

- 1 Откроем файл bot1.dsn из папки .\LAB\BOT\design\.
- 2 Выберем DSN-файл в дереве проекта и запустим команду **Tools-Annotate**.
- 3 Перейдем на закладку PCB Editor Reuse и включим опцию Generate Reuse module.

4 Нажмем **OK**, компонентам будет назначено дополнительное свойство для идентификации его внутри повторяемых модулей.

Annotat	e		
Packaging	PCB Editor F	Reuse	Layout Reuse
Function			
🗹 Ger	nerate Reuse	module	
Rer	number design	for usir	ng reuse modules
Action			
Incr	emental	01	Unconditional
Physical	Packaging		
Property	Combine Strin	g:	
{Value}	Source Libra	ry}	

После аннотации можно проверить наличие свойства в менеджере свойств. Их название **REUS_ID** и **REUSE_ANNOTATE**, сохраним проект.

Reference	R2	R1	R3
REUSE_ANNOTATE	TRUE	TRUE	TRUE
REUSE_ID			

Создание иерархического компонента

Для этого метода необходимо создать файл печатной платы и выполнить в него аннотацию схемы. Будет использоваться проект **bot2.dsn**, в нем уже выполнена аннотация и компонентам назначены необходимые свойства.

Выполним следующие шаги:

- 1. Отроем файл bot2.dsn из папки .\LAB\BOT\library\.
- 2. Выберем DSN-файл в дереве проекта и запустим команду Tools-Generate Part.

3. Зададим текущий файл как источник в графе **source file** и заполним остальные графы соответствующим рисунку ниже образом.

4. Убедимся, что опция **copy schematic to library** не отмечена. В противном случае будут потеряны некоторые Occurrence свойства компонентов, наличие которых необходимо для создания повторяемого модуля.

5. Нажмем **ОК**. Будет создана библиотека **bot2.olb** с компонентом LPF.

Generate Part			
Netlist/source file:			OK
.\bot2.dsn		Browse	Cancel
Netlist/source file type:		Primitive	Cancer
Capture Schematic/Design	~	No Yes	Help
Part name:		O Default	FPGA Setup
LPF			
		Copy scher	natic to library
Destination part library:			
.\bot2.olb			Browse
Create new part	O Update pins o	n existing part in li	brary.
Pick symbols manually			
Sort pins	Additional pins		
Ascending order	Specify the	e number of additi	onal
0	DI IS OT DU		
O Descending order	Number	of pins: 0	
Descending order Retain alpha-numeric pir Implementation	n-numbers. Device is pi	n grid array type p	oackage.
Descending order Descending order Retain alpha-numeric pi Implementation Implementation type:	Number n-numbers, Device is pi Source Schemati	n grid array type p c name:	backage.
Descending order Descending order Descending order Implementation Implementation type: Schematic View	Number of Number of Number of Number of Numbers. Device is pinted by Source Schematic LPF	n grid array type p c name:	oackage.
Descending order Descending order Descending order Implementation Implementation type: Schematic View Implementation file:	Number of Number of Number of Number of Numbers. Device is pinted by Source Schematic LPF	n grid array type p c name:	vackage.

Созданный компонент, LPF, может быть использован в любом проекте и включает в себя всё содержимое проекта **bot2.dsn**. Выводы его схемного символа соответствуют портам в исходном проекте. В текущем примере это два вывода **OUT_FILTER** и **GND**:

Как и с любым символом, можно редактировать графику или менять размещение выводов. Но у повторяемого модуля имеются несколько важных свойств, без которых его использование невозможно. Их можно просмотреть, открыв список свойств командой **Options-Part properties**:

- Implementation Path: Указывается путь к исходному файлу проекта. После того как повторяемый компонент размещен на схеме, можно открыть содержащуюся в нем схему командой Descend Hierarchy из меню по щелчку ПКМ. Если схема не открывается, это признак того, что путь указан неверно. Можно указать в абсолютном, полном виде или относительном (как на рисунке ниже).
- 2. Implementation Type: тип включаемого в схему повторяемого модуля. В рассматриваемом случае это лист схемы Schematic View.
- 3. Implementation: Имя папки со схемой внутри включаемого проекта. Для проекта bot2.dsn это «LPF».

Name	Value	Attributes		UK
name	value	AunDutes	_	Cancel
Implementation Path	.\bot2.dsn		^	Carloor
Implementation Type	Schematic View			New
Implementation	LPF			
Name	LPF.Normal	R		Remove
Part Reference	U?	ΒV		
Pin Names Rotate	True			Display
Pin Names Visible	True			
Pin Numbers Visible	False		~	Help

Создание списка цепей в Capture

После выполнения описанной выше подготовки проекта, нужно создать синхронизированную со схемой топологию (BRD-файл).

- 1. Откроем проект **bot1.dsn**, в котором выполнена операция **PCB Editor Reuse**.
- 2. Выберем Tools-Create Netlist.

3. Отметим вариант Create or Update PCB Editor Board и создадим файл bot1.brd в папке allegro в папке с проектом. Либо можно сгенерировать список цепей и импортировать его в Allegro PCB Editor в существующую топологию.

Создание топологии для повторяемого модуля

1. Разместим в Allegro PCB Editor компоненты и выполним трассировку.

2. Создадим модуль командой **Tools-Create Module**. При выборе команды Allegro попросит выбрать компоненты, которые будут в него входить, отметим необходимые. После выбора компонентов останется отметить точку привязки. Информация об этом будет выводиться в командной строке.

3. Затем будет предложено указать имя и размещение создаваемого MDD-файла. Это файл повторяемого модуля и его название должно иметь вид:

<design-name>_<schematic-folder-name>.mdd

В нашем случае - **bot1_voldiv.mdd.**

4. Сохраним модуль в папке с проектом платы и выйдем из Allegro PCB Designer

Аналогичным образом создадим MDD-файл для схемы bot2.dsn, его имя будет bot2_lpf.mdd

Теперь у нас есть возможность использовать сохранные модули в любом другом проекте. В Capture в виде иерархического компонента или блока, в PCB Designer в виде MDD-файла.

Попробуем сделать это в проекте **top.dsn**, в котором используем **Bot1.dsn** как иерархический блок, а **Bot2.dsn** как иерархический компонент.

1. Откроем проект top.dsn в Capture из папки .lab\

2. Убедимся что опция **Design level (Only PCB Design)** отмечена для того, чтобы использовать сквозную нумерацию компонентов, она находится в меню **Options-Preferences-Miscellaneous**. Если она не активирована, необходимо отметить её и перезапустить Capture.

F1	Auto Reference
	Automatically reference placed parts Design Level(Only PCB designs)
	Preserve reference on copy

Аннотацию на уровне проекта (Design level Annotation) следует использовать в проектах, в которых имеются повторяемые модули. С этой опцией программа будет назначать уникальные позиционные обозначения компонентам на всех уровнях иерархии. В противном случае, если рассматривать пример схем **bot1.dsn** и **bot2.dsn**, на каждой из них будет иметься компонент с именем R1. С таким же именем будет резистор и на схеме проекта **top.dsn**. В итоге, дублирующиеся позиционные компоненты вызовут ошибки при компиляции списка цепей и платы.

Размещение иерархического блока

Выберем команду **Place-Hierarchical Block**, откроется окно настроек, в котором нужно указать:

Reference - позиционное обозначение в рамках основного проекта.

Implementation Type – тип блока, в нашем случае это Schematic view.

Path and file name – путь к проекту схемы, и имя схемы в нем, которые будут вставляться. Надо указать путь к проекту **bot1.dsn**, убедиться, что присутствует расширение файла «dsn», название схемы «voldiv».

После нажатия на **OK**, останется указать точку вставки блока и его размер. После размещения, можно выполнить щелчок ПКМ на блоке и с помощью команды **Descend Hierarchy**, перейти в схему, к которой он привязан.У блока имеются иерархические выводы, связанные с портами в исходной схемой.

Place Hierarchical Block		×
Reference: H1	Primitive ○ <u>N</u> o ○ <u>Y</u> es ● D <u>e</u> fault	OK Cancel <u>U</u> ser Properties <u>H</u> elp
Implementation Implementation <u>T</u> ype		
Schematic View		\sim
Implementation name:		
voldiv		~
Path and filename		
E_CAPTURE_ALLEGRON	AB\BOT\DESIGN\BOT1	.DSN ✓ Browse

Размещение иерархического символа

Выберем команду **Place-Part**, в списке библиотек, при необходимости, добавим ранее созданную библиотеку **bot2.olb** и разместим символ LPF из неё. После этого можно проверить правильность указанного в символе пути к исходной схеме, так же выполнив команду **Descent Hierarchy**. Если вложенная схема открывается, то всё верно. Соединим вставленные элементы с основной схемой, и получим схему схожую с указанной на рисунке ниже:

Выберем файл **top.dsn** в дереве проекта и запустим команду **Tools-Annotate**. Перейдем в закладку **PCB Editor Reuse tab** и отметим опцию **Renumber design for using reuse module**. Мы получим список всех привязанных схем в окне ниже, под заголовком «Select modules to mark for reuse». Отметим обе вложенных схемы для аннотации.

Packaging PCB Editor Reuse Layout Reus	
	se
Eunction <u>G</u> enerate Reuse module <u>R</u> enumber design for using reuse mod	lules
Action	I
<u>P</u> hysical Packaging Property Combine String:	
{Value}{Source Library}	
Do not change the page number Select modules to mark for reuse: BDT1.DSN : voldiv BDT2.DSN : LPF	

Создание списка цепей и платы

Выберем файл top.dsn в дереве проекта и запустим команду Tools-Create Netlist. Отметим опции Create PCB Editor Netlist и Create or Update PCB Editor Board (Netrev), укажем имя платы и создадим его, нажав ОК.

Cre	ate Netlist									×
PCB	EDIF 2 0 0	INF	Layout	PSpice	SPICE	Verilog	VHDL	Other		
PCB Com	Footprint bined property	string:								
PCI	B Footprint									
Cre	eate PCB Edito	or Netlist	t						Setup	
Opt	ions									
Net	list Files Direct	ory:	allegro							
	View Output									
	reate or Updat	e PCB	Editor Boar	d (Netrev)					
Opt	ions	Г								
Inp	ut Board File:	L								
Out	put Board File	: [Jser\Deskt	top\Desig	n_Reuse	_Capture	_Allegro\	LAB\TO	P2.brd	
	Allow Etch Re	moval [During ECC		Allow Use	er Defined	Property	<i>,</i>		

Перейдя в файл созданной топологи, запустим размещения компонентов командой **Place-Manually**. В списке можно заметить компоненты с символом «М», который означает, что они входят в повторяемые модули.

W Placement	
Placement List Advanced Settings	
Module instances 🗸 🗸 🗸	
⊡…	OLDIV_117 134

Компоненты можно ставить как обычно, но правильнее размещать в составе модуля, сохраняя заготовленную трассировку, для этого следует выбрать тип размещения **Module Instances**. Отметим оба доступных модуля и разместим их на плате.

Если при попытке размещения возникает ошибка, это может быть обусловлено тем, что программа не находит ранее сохраненные MDD модули, следует проверить путь к их расположению в настройках программы. Их можно найти в меню Setup-User Preferences, на закладке Path-Library в группе modulepath.

🗄 🧰 Interactive	modulepath	
	padpath	
	parampath	
- Misc	r	
- C Obsolete	psinpatri	
	step_facet_path	
	step_mapping_path	
Editor	steppath	
Library	techpath	
	topology topoloto poth	
	topology_template_path	
E Route	modulepath Items	×
i ⊕ Chapes		
Signal_analysis	Directories:	🖄 X 🕈 🗲
	smodulepath	
Search for preference:	563,000,000,000,000,000	
Search		
Include summary in search		
Summary description		
Summary description Category: paths/library		
Summary description Category: paths/library Search path for design reuse modi modulepath = \$modulepath		-
Summary description Category: paths/library Search path for design reuse mod modulepath = \$modulepath		
Summary description Category: paths/library Search path for design reuse mode modulepath = \$modulepath		
Summary description Category: paths/library Search path for design reuse modu modulepath = \$modulepath		
Summary description Category: paths/library Search path for design reuse modu modulepath = \$modulepath		
Summary description Category: paths/library Search path for design reuse modu modulepath = \$modulepath OK Cancel	□ Expand	0K Cancel

Другой причиной ошибки может быть неверное наименование MDD-файла. Оно должно быть вида **<Имя проекта>_<имя схемы>,** в соответствии с именами проекта, который вы хотите повторить.

Помимо ресурсов представленных на официальном сайте Cadence <u>https://support.cadence.com</u>, вы можете обратиться к официальному представителю Cadence в России через сайт <u>pcbsoft.ru</u>, либо по почте <u>info@pcbsoft.ru</u>.

Обратная связь

Ваши вопросы и предложения вы можете направлять на почту support@pcbsoft.ru.

