cadence

PSpice Device and System Modeling in C/
C++ and SystemC

Product Version 17.2-2016
April 2016

©1991-2015 Cadence Design Systems, Inc. All rights reserved.

Printed in the United States of America.
Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Product PSpice contains technology licensed from, and copyrighted by: Apache Software Foundation, and
is © 2000-2005, Apache Software Foundation. All rights reserved. Sun Microsystems and © 1994-2007,
Sun Microsystems, Inc. Free Software Foundation and © 1989, 1991, Free Software Foundation, Inc.
Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation and © 2001, Regents
of the University of California. Daniel Stenberg and © 1996 - 2006, Daniel Stenberg. UMFPACK and © 2005,
Timothy A. Davis, University of Florida, (davis @cise.ulf.edu). Ken Martin, Will Schroeder, Bill Lorensen and
© 1993-2002, Ken Martin, Will Schroeder, Bill Lorensen. Massachusetts Institute of Technology and © 2003,
the Board of Trustees of Massachusetts Institute of Technology. ADMS[GNU Lesser General Public
License], and © 2015, ADMS. All rights reserved.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document
are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or
registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are
used with permission. All other trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and
contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or
distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as
specified in this permission statement, this publication may not be copied, reproduced, modified, published,
uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence.
Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its

customer.

2. The publication may not be modified in any way.

3. Any authorized copy of the publication or portion thereof must include all original copyright,
trademark, and other proprietary notices and this permission statement.

4. The information contained in this document cannot be used in the development of like products or
software, whether for internal or external use, and shall not be used for the benefit of any other party,
whether or not for consideration.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of such
information will not infringe any third party rights, nor does Cadence assume any liability for damages or
costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

PSpice Device and System Modeling with C/C++ and SystemC

Contents

1

Introduction to PSpice System Design.......................... 5
AUIBNCE . . .o e 5
Prerequisities 5

April 2016 3 Product Version 17.2-2016

©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC

2
Setting up the Environment for PSpice DMI Models 1

3
Generating and Simulating a PSpice DMI model for Digital
Power Supply Simulation ... 3

4
Generating and Simulating a PSpice DMI Model for Analog
Behavioral Circuit. ... 13

o)
Generating and Simulating a PSpice DMI Model for State
Model Simulation 19

6
Generating and Simulating a Verilog-A file based PSpice DMI

April 2016 4 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

Introduction to PSpice System Design

The PSpice System Design with C and SystemC tutorial provides detailed instructions to
build and compile various PSpice Device Modeling Interface (DMI) compatible C and
SystemC models using Microsoft® Visual Studio Community 2013. It also provides step-by-
step instructions to simulate these models in PSpice A/D.

This tutorial covers the following topics:

Setting up the Environment for PSpice DMI Models

Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation

Generating and Simulating a PSpice DMI Model for Analog Behavioral Circuit

Generating and Simulating a Verilog-A file based PSpice DMI Model
Generating and Simulating a PSpice DMI Model for State Model Simulation
Generating and Simulating a SystemC based PSpice DMI Model

Audience

This tutorial is designed for first-time users of PSpice DMI models in PSpice simulation. If you
want to use PSpice DMI models in PSpice simulation, compile and build the models using
Microsoft Visual Studio Community 2013.

Prerequisities

Before you start to run the tutorial, ensure that the following software are installed on your
system:

®m Microsoft Visual Studio Community 2013
m Cadence® OrCAD® Capture 17.2-2016 or onwards
m Cadence® PSpice® A/D 17.2-2016 or onwards

April 2016 5 Product Version 17.2-2016

Introduction to PSpice System Design

m Mathworks® Matlab 2015b or onwards(64-bit)

It is assumed that you are familiar with Microsoft Visual Studio Community 2013, Cadence
OrCAD Capture, Cadence PSpice A/D, and Mathworks Matlab. The scope of this document
does not include explaining the interfaces, commands, or various methodologies of these
software. This document contains detailed instructions around building and compiling PSpice
DMI models.

Note: For more information on OrCAD Capture, PSpice A/D, and C APIs, refer to OrCAD
Capture User Guide, PSpice Reference Guide, PSpice Device Modeling Interface
API Reference, and PSpice User Guide.

April 2016 6 Product Version 17.2-2016

../pspDMIRef/pspDMIRefTOC.html#firstpage
../pspug/pspugTOC.html#firstpage
../pspcref/pspcrefTOC.html#firstpage
../cap_ug/cap_ugTOC.html#firstpage

PSpice Device and System Modeling with C/C++ and SystemC

2

Setting up the Environment for PSpice
DMI Models

This chapter explains the setup procedure for C and SystemC models in PSpice.

Do the following steps to create the environment variables that you need to get started to
create a Visual Studio Project:

1. Unzip the PSpiceSystems. zip file in your system.

Once unzipped, you can see the following sub-folders inside the PSpiceSystems
folder: DigitalPowerSupply, NoiseFilter, StateModel, VerilogA, and
SystemC.

2. Create a new environment variable, SYSTEMC, and set the SystemC installation path
as its value.

By default, the systemC is installed with the Cadence installation at <installation
path>\tools\pspice\tclscripts\pspModelCreate\SystemC.

Edit User Variable ==
Yariable name: SYSTEMC
YWariable value: pspiceltclscriptsipspMbdelCreate! Systemc
[(] 4] | Cancel |

3. Open the Windows command prompt and verify the SystemC path using the set
command.

April 2016 1 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Setting up the Environment for PSpice DMI Models

BN Cowindowshsysterm32homd exe | |==] @

D:~Cadence_lite~SPB_17.2%tools“hin>set SYSTEMC
SYSTEMC=D:~Cadence_lite~SPB_17.2%tools“pspicestclscripts pspModelCreatesSystemC

D:~Cadence_lite“SPB_17.2%tools“hin}_

April 2016 2 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC

3

Generating and Simulating a PSpice DMI
model for Digital Power Supply
Simulation

This module covers an example of a Digital Power Supply with models using multiple level of
abstractions.

In this module, you will:

B Generate a template code for PSpice DMI model

B Use the PSpice DMI model for the Digital PWM Control block

m Simulate the PSpice DMI model with respect to Digital Power Supply circuit

Do the following steps to generate a template code for a PSpice DMI model:

1. Select Start Menu — All Programs — Cadence 17.2-2016 — Product Ultilities —
PSpice Utilities — Model Editor to launch Model Editor.

If prompted, choose a license that includes PSpice A/D; for example, OrCAD PSpice
Designer Plus.

2. Select Model — DMI Template Code Generator in Model Editor.

April 2016 3 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation

E' L 2 Ivioye L] I
File Edit Wiew BEEEES Plot Tools Window Help

ER=~ N EE A A o

Copy Erarm..,
Add Smoke...

DML Ternplate Code Generator...

IBI% Translator...

Irnport..,

Export...

3. Enter the following data in the DMI Template Code Generator window to generate a
Digital C/C++ based PSpice DMI model:

Part Name: PwWwMControl
Part Type: Digital C/C++
Interface Type: Clocked

DLL Location: DigitalPowerSupply folder

April 2016 4 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation

& DMITemplate Code Generatar [smcie]

Usze this dialog-box to auto-generate DM template code for the followang PSpice-DMI models: Analog, Digital, and
SyslemC. The dialog-bax al50 impors the Varilog-A Compacl Device modals using A0DMS
Hecomimended steps:

1. Testthe model code stand-alone by bullding an exe

2. Create the PSpice-DMI adapter code, and edit it in Visual Studio to insed model code

3. Usza the generabed PSpice library (lib file) 10 creale a schematic symbol The generated symbol can be placed
in the schematic for PSpice simulation

Parl Details
Fart Mame FMConiral
Part Type Digital CIC=+
FPars
Interface Type Clocked
Fart Entry Paors CEVFila
FParameters
Global Paramelers
Device Parameters
Cutput
DLL File Marra FiMContral dil
Log File Mame PYMContrallog
DLL Location DADigitalPowerSupply Brovse
Lo Cancal Halp

4. Select the CSV File checkbox in the Port Entry field.
A Port Entry window is displayed.
5. Browse the portsv.csv file from DigitalPowerSupply folder.

The ports are automatically read from the CSV file.

April 2016 5 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation

Port Entry

= The csy file neads to follow the follnaing syntaec
=Port Mame=, <Porf Type: Inpulll0=, <Por Size=, =Inilial Walue=, =Port Descriplion=
= Forezample,
IN1, INPUIT, 1, ¥, Input Port 1
ouT, o, & 0,10 Port 1

Selectyour S35V file here D05_DigitalPowerSupphiporivc: | Browse

Fort Mame Faort Type Fort Size CefaultValue Port Description
CLK INPUT 1 0 Clock

FB INPLT i i Feedback input
REF IMPLUT g 0 Reference input
Py 10 1 L Cutput Pulse Yvidth

6. Review the port entry list in the Port Entry window and click OX.
7. Click the Global Parameters click box.
A Global Parameters window is displayed.

8. Enter the following details in the Global Parameters window for PER and D parameters
and click OK:

Enter number of parameters: 2

Parameter Parameter Type Default Value Parameter Description
Name

PER double 0 Period

D double 0 Duty Cycle

9. Click ok on the DMI Template Code Generator window.

A log file is displayed. A .lib file is successfully created at the specified DLL location and
opened in Model Editor.

10. Click on the library name in the Model List window of the Model Editor to see the library
infromation.

April 2016 6 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation

In the following screenshot, you can see that the library points to the DLL that is created
for the model. You will complete the template model code that was generated on creation
of the .dIl and .lib file and regenerate the .dll file.

dodels List @ || | subcke % PuMControl CLE FE O FH_L FE 2 FE 3 FE 4 FE 5 FE & FE_7 REF_
O REF_1 REF_Z REF_3 REF_4 REF_S REF_6 REF_7 PW

+ OPTIONAL: :IFU[-":'"."_I."':"HI\. :\l'.i'f'u'l."'q'l'.i'_l"l.iﬂll

¥ PWMCon. SUBCKET # PARAMS:

Jmodel PVEControl TIHING ugate [

+ Cplhmn~éns tplhty=9na tplhmx=l5ns

+ tphlmn=déns tphlry=ilns cphlmx=1Sna

+ 1

01 LOGICERRP| 17, 1) DPWR DOND

+ CLEFB OFB 1 FB 2 FB 3 FBE 4 FBE S FE & FE 7 REF 0 BREF 1 REF & BEF 3
REF_'1 RI'F_S I‘EF_S F\.EF_'.‘ FW

+ PVEControl TIRING IO FTD

+ C KODEL: PWHComtrol.dll PVAControl

¢ PARAMS:

cends=

Model Heme Type Ll

11. Launch Visual Studio Community 2013 in your machine.

12. Click Open Projectin the Visual Studio’s Start Page and browse to the DLL, location
for the Visual Studio Project.

In this case, the Visual Studio project is PWMControl .vexproj.

13. Modify the default configuration in Configuration Manager (Build — Configuration
Manager) to 64-bit platform using the following steps:

a. Inthe Active Solution Platformdrop-down list, select the <New. . .> option
to open the New Solution Platform window.

b. Inthe Type or select the new platformdrop-down list, select 64-bit platform
and close the window.

14. Build the project using Build — Build Solution in the Visual Studio to verify if there are
no build issues.

15. Expand PWMControl project in Solution Explorer and open the
PWMControl_user.cpp file to edit using the following steps:

a. Search the following text in the .cpp file: psppspPWMControl: :evaluate (

b. Once you find psppspPWMControl: :evaluate (, search for // LOGIC TO BE
IMPLEMENTED BY USER.

You will add the model logic code here.

c. Add the following code after PW=pVvVectorStates[17] .getLevel () ; inside the
if loop:
pspBits2Int (FB, FBInt, 8);
pspBits2Int (REF, REFInt, 8);

April 2016 7 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation

16.

17.
18.

19.

if (REFInt > FBInt && mD < 0.98) {
mD += 0.001;

}

else if (REFInt < FBInt && mD > 0.02) {
mD -= 0.01; fprintf(stderr, "Reducing DutyCycle\n");

}

if (mCurrentCLKCount<= 0) {
mCurrentCLKCount = mPER;

}

if (mCurrentCLKCount > mD * mPER)
mPWStatus = false;

else
mPWStatus = true;

if (mPWStatus==true && (int)PwW != 1) {
PW = pspBit::HI;

}

else if (mPWStatus == false && (int)PwWw != 0){
PW = pspBit::LO;

}

d. Modify fp_SetState (mRef, j, &lState, NULL); to fp_SetState (mRef,
j-17, &lState, NULL) ;

e. Save the file.

As the code require some extra variables, add the following text just before the last
closing brace in the pspPWMControl . file:

unsigned int FBInt, REFInt;
int mCurrentCLKCount;
bool mPWStatus;

Save the pspPWMControl . h file.
Rebuild the Visual Studio project using Build — Build Solution.
The model DLL file is built with the required model evalution code.

Note: When you rebuild your solution, ensure that the Configuration is Release, not
Debug.

Once the PSpice library is generated, export the PSpice library to the Capture library
using Export to Part Library in Model Editor.

April 2016 8 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation

PSpice Model Editar
Al Edit MWiews BAodel Plot Tool

L Mews Ctrl+[
I Open.. Ctrl+0

I Export To Part Library..,
' FModel Impoaort Wizard..,

[Encrypt Library
20. Open the DC-DC.dsn file, present in the DigitalPowerSupply folder, in OrCAD
Capture.

21. Right-click and select Make Rootto make the BuckConverter-SW-Control schematic as
root.

22. Open the BuckConverter-SW-Control schematic page.

PARAMETERS
O]
Dwpl

GHD |- 4
i =
& i = |
J;WI
bk o5 agy O FTRE = 0 B

) ONTHE s 001uS =
= DELAY = =

[l |

s bsab st epse e AT

B
l STARTVAL = 0 |

23. Descend on the Software Controlled Switch, that is, U1, to see an Software-
Controlled PWM Block implementation.

April 2016 9 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation

F -
z 1 % Irmport Model Pararmeters...
Software Controlled Switch Descend Hierarchy
GMO

| o o
o [} L

v [[

R R 1 1= Connectto Bus —

24. Activate the BuckConverter-SW-Control-tran simulation profile from the project
Manager.

Note: For your convienience, the design already has the PWMControl block added. If
you want to add your own PWMControl block, ensure that the your part’s block shape
and pin locations are same as the already added one for minimum modification.

25. Simulate the project and view the output in PSpice as shown in the following screenshot.

5 1.5ms
UL .2 CTH)

Note: Ensure that the PWMControl PSpice library(.lib) is added in the Simulation profile
as configured files.

You can note that the Capture design simulated with the Digitally Clocked C/C++
PWMControl part successfully just like any other Capture part.

April 2016 10 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation

April 2016 11 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation

April 2016 12 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC

4

Generating and Simulating a PSpice DMI
Model for Analog Behavioral Circuit

This module describe steps to generate an analog behavioral model based PSpice DMI
model. In this module, a MATLAB averaging filter is taken as an example.

In this module, you will:
m Generate a template code for PSpice DMI model
B Use the PSpice DMI model as an averaging filter

B Simulate the PSpice DMI model in a Capture design

Do the following steps to generate the PSpice DMI model and simulate the model in a Capture
project:

1. Launch Model Editor.

If prompted, choose a license that includes PSpice A/D; for example, OrCAD PSpice
Designer Plus.

2. Select Model — DMI Template Code Generator.

3. Enter the following data in the DMI Template Code Generator window to generate an
Analog based PSpice DMI model:

Part Name: NoiseFilter
Part Type: Analog
Model Type: Function-Dependent Voltage Source
DLL Location: NoiseFilter folder
4. Click the Terminal Entry box in the Terminals field.

A Terminal Entry window will be displayed.

April 2016 13 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for Analog Behavioral Circuit

5. By default, the Terminal Entry window has 4 terminals, that are, 2 input terminals and 2
outer terminals.

6. Change the terminal description of both the input terminals to Noisy Input 1 and Noise
Input 2 instead of Control Input 1 and Control Input 2 and click OK.

Terminal Entry

mHumber ofterminals 4
Terminal Mame Terminal Description
Inputt Moise Input 1
Input? ' Maise Input 2
Cuatputt Cuatpt 1
Cutput2 Cultput 2
ik iTanral Al

7. Click ok on the DMI Template Code Generator window.

A log file is displayed. A .lib file is successfully created at the specified DLL location and
opened in Model Editor.

8. Click on the library name in the Model List window of the Model Editor to see the library
infromation.

In the following screenshot, you can see that the library points to the DLL that is created
for the model. You will complete the template model code that was generated on creation
of the .dIl and .lib file and regenerate the .dll file.

kadels List] |.subckt NoiszeFilter Inputl Inputi Outputl Outputz
+ PALRLMI: mod Max3tepl3ize=le+30

Model Mame — Type P ¥1 Inputl InputZ Outputl OUEputz

MoiseFilter SUBCKT + CMI NoiseFilter.dll NoiseFilter model PALRAMI:
Lwodel MNoiseFilter wodel CHMI NoiseFilter

+ Maxitep3ize={wod MaxStepiize}

.ends

9. Launch Visual Studio Community 2013 in your machine.
10. Click Open Projectin the Visual Studio’s Start Page and browse to the DLL, location
for the Visual Studio Project.

April 2016 14 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for Analog Behavioral Circuit

In this case, the Visual Studio project is NoiseFilter.vcxpro]j.

11. Modify the default configuration in Configuration Manager (Build — Configuration
Manager) to 64-bit platform using the following steps:

a. Inthe Active Solution Platformdrop-down list, select the <New. . .> option
to open the New Solution Platform window.

b. Inthe Type or select the new platformdrop-down list, select 64-bit platform
and close the window.

12. Build the project using Build — Build Solution in the Visual Studio to verify if there are
no build issues.

13. Expand NoiseFilter project in Solution Explorer and openthe NoiseFilter_user.cpp
file to edit using the following steps:

a. Add the following code after #include “pspNoiseFilter.h”:

extern "C" {
#include "../averaging filter/averaging_filter.h"

}
The averaging_filter.hfile is an MATLAB generated header file that contains
the averaging filter function.

b. Add the following code after double gain = 0.0;:

///user code
if (pMode != MDTRAN) ({
for (int 1 = 0; 1 < 16 + MSTVCT; i++) {

sv.x[1] = xVal;

}
sv.y[0] = yVal = averaging_filter (xVal, sv.x);
/177

This code updates the state vector with respect to the latest input value and calls the
averaging_filter function for gain computation.

c. Save the NoiseFilter_ user.cpp file.

14. In Visual Studio, right-click on the NoiseFilter in the Solution Explorer and select Add —
Existing Item to add the MATLAB generated averaging_filter.c file to the project

The averaging filter.c islocated in the averaging filter folder.

15. Rebuild the Visual Studio project using Build — Build Solution.

April 2016 15 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for Analog Behavioral Circuit

16.

17.
18.

19.
20.
21.

22,

23.

24.

The model DLL file is built with the required model evalution code.

Note: When you rebuild your solution, ensure that the Configuration is Release, not
Debug.

Once the PSpice library is generated, export the PSpice library to the Capture library
using Export to Part Library in Model Editor.

Open the DC-DC.dsn file, present in the NoiseFilter folder, in OrCAD Capture.

Right-click and select Make Rootto make the BuckConverter-SW-Control schematic as
root.

Open the BuckConverter-SW-Control schematic page.
Select Instance U2, that is, NOISECOMP.

Right-click U2 and select Edit Properties to view the implementation defined as
NOISECOMP.

This is added to add noise to the input voltage. The following implementation of
NOISECOMP illustrates a random noise being added to the input voltage:
.subckt noisecomp OUTPUT input
E_RND OUTPUT 0 VALUE={V(INPUT)+0.3*RND}
R1 input 0 100K

.ends

Descend on the Software Controlled Switch, that is, U1, to see an Software-
Controlled PWM Block implementation.

Activate the BuckConverter-SW-Control-tran simulation profile from the project
Manager.

Note: For your convienience, the design already has the averaging_filter block added
as noisefilter. If you want to add your own noisefilter block, ensure that the your part’s
block shape and pin locations are same as the already added one for minimum
modification.

If you have added your own noisefilter block, ensure that the pin 2 of Inputand pin 4
of Output of the block are connected to GND.

Simulate the project and view the output in PSpice as shown in the following screenshot.

April 2016 16 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for Analog Behavioral Circuit

16.350
8.184ms 8.5 88ms 1.0888ms 1.588ms
O U{UT.U4:-HOISY IHPUT) < U{UT.U4:0UTPUT) U{uouT})
Time

Note: Ensure that the NoiseFilter PSpice library(.lib) is added in the Simulation profile
as configured files.

You can note that the Capture design simulated with the Analog NoiseFilter part
successfully just like any other Capture part.

April 2016 17 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for Analog Behavioral Circuit

April 2016 18 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC

S

Generating and Simulating a PSpice DMI
Model for State Model Simulation

This module covers an example of an automotive state model being simulated in PSpice as
a PSpice DMI model. It uses an implementation of an automotive power window control
module. The control logic is based on a state model which is referred from a MATLAB
reference design.

In this module, you will:

m Generate a template code for PSpice DMI model using the DMI Template Code
Generator window

B Use the PSpice DMI model for the power window module circuit

m Simulate the PSpice DMI model with respect to power window module circuit

Do the following steps to generate a template code for a PSpice DMI model:

1. Launch Model Editor.

If prompted, choose a license that includes PSpice A/D; for example, OrCAD PSpice
Designer Plus.

2. Select Model — DMI Template Code Generator to open DMI Template Code
Generator window.

3. Enter the following data in the DMI Template Code Generator window to generate a
Digital C/C++ based Combinatorial PSpice DMI model:

Part Name: stateMachine

Part Type: Digital C/C++

Interface Type: Combinatorial

DLL Location: PSpiceSystems/StateModel/Code

4. Click on the Ports radio button to enter Input and 10 ports for the model.

April 2016 19 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for State Model Simulation

A Port Entry window is displayed.

5. Enter the following information in the Port Entry window:

Enter number of input ports: 4

Enter number of 10 ports:2

Port Name Port Type Port Size Default Value Port Description

STOP Input 1 0
DRIVER Input 3 0 0=>Neutral, 1=>Up, 2=>Down
PASSENGER Input 3 0 0=>Neutral, 1=>Up, 2=>Down
OBSTACLE IO 1 0
UP (@] 1 0
DOWN 10 1 0
Port Name Part Type Part Size Defaultvalue Por Description
STOP Input 1 0 0
! O=>Neutral, 1=>Up, ;
DRIVER Inpust 3 0 ! 9= Down
O==Neutral,
PASSEMGER Input 3 0 == Up 2==Down
OBSTAGLE 0 1 0
LUP [1 0
DOy 0 1 0

6. Click OK on the Port Entry window.

7. Click OK on the DMI Template Code Generator window.

A log file is displayed. A .lib file is successfully created at the specified DLL location and
opened in Model Editor.

8. Click on the library name in the Model List window of the Model Editor to see the library

infromation.

April 2016

©1991-2015 Cadence Design Systems, Inc. All rights reserved.

20

Product Version 17.2-2016

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for State Model Simulation

In the following screenshot, you can see that the library points to the DLL that is created
for the model. You will complete the template model adaptor code that was generated on
creation of the .dll and .lib file and regenerate the .dll file.

Maodels List & || |-=ubclke I_SeareMachine STOP DRIVER O DRIVER_1 DRIVER_2 PA2SENGER_O
FRASSENGER 1 FASSENGER 2 QBESTACLE UFP DOWN

ModelMerne Type M || | opTIONAL: DPWR=$G_DPWR DGND=5G_DGND

X _Statehac, SUBCET + PARAMS:
.model StateMachine TIMING ugate |

+ cplhmn=6na tplhoy=9hs cplhmx=15n=

+ tphlmn=éns tphley=10ns tphlmx=15n=

1

Wl LOGICEXZP| 8, 2) DPWR DGHD

+ STOP DRIVER O DRIVER 1 DRIVER 2 PASSENGER O PASSENGER 1 PASSENGER 2
QBSTACLE UF DOWN

+ SraceMachine TINING IO _3TD

+ C_MODEL: StaceMachine.dll StateMachine

+ PARANS:

 Ends

9. Launch Visual Studio Community 2013 in your machine.

10. Click Open Projectin the Visual Studio’s Start Page and browse to the DLL. location
for the Visual Studio Project.

In this case, the Visual Studio project is StateMachine.vcxproj.

11. Modify the default configuration in Configuration Manager to 64-bit platform as described
in Step 13 of Chapter 3.

12. Build the project using Build — Build Solution in the Visual Studio to verify if there are
no build issues.

13. Expand StateMachine project in Solution Explorer and open the
StateMachine_user. cpp file to edit it using the following steps:

a. Add the following code after #include "pspStateMachine.h"
#include "../FSM.cpp"

The FsM. cpp file contains the implementation of State Machine Model.

b. Add the following code after // LOGIC TO BE IMPLEMENTED BY USER:

int drivervVect[3];
int)DRIVERI[O];
int)DRIVERI[1];
int)DRIVER[2];

int passengerVect[3];
passengerVect[0] = (int)PASSENGERI[O0];

passengerVect[1l] = (int)PASSENGERI[1];

driverVect[0] =

driverVect[1l] =

—_— e~ o~ =

driverVect[2] =

April 2016 21 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for State Model Simulation

passengerVect[2] = (int)PASSENGERI[2];

int obstaclelInt;
if ((int) OBSTACLE ==)

obstacleInt = 1;

else

obstacleInt = 0;

int stoplInt;
1if((int)STOP == 1)

stopInt = 1;

else

stopInt = 0;

setState(stopInt, obstacleInt, driverVect, passengerVect, ¤tState,

&nextState, &prevState, &windowMovementOutput, timer) ;

i1f (windowMovementOutput .moveUp == 1)

Uup = 1;
else
UP = 0;
1f (windowMovementOutput .moveDown == 1)
DOWN = 1;
else
DOWN = 0;

The setState function is the promary function that updates the current state of the
State Machine and output signals of the Power Window Control module with respect
to input signals and the last state of the State Machine.

. Edit fp_SetState(mRef, j, &lState, NULL); to fp_SetState (mRef, j-

8, &lState, NULL) ; for the two different instances.

14. Add the following code in the pspStateMachine.h file after #include
"pspiceDigApiDefs.h":

#include "../FSM.h"

15. Add the following code in the pspStateMachine.h file after double mPrevTicks;:

// add required class variables here

int timer;

states
states
states

struct

16. Rebuild the Visual Studio project using Build — Build Solution.

currentState;
prevState;
nextState;

window_movement windowMovementOutput;

Ensure that the Release configuration is selected.

April 2016

22

©1991-2015 Cadence Design Systems, Inc. All rights reserved.

Product Version 17.2-2016

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for State Model Simulation

17. Once the PSpice library is generated, export the PSpice library to the Capture library
using Export to Part Library in Model Editor.

18. Openthe StateMachine.dsn file, presentin the stateModel folder, in OrCAD Capture.
19. Right-click and select Make Root to make the Schematic1 schematic as root.
20. Open the Page1 schematic page.

. .
[Raseon. [E pacEr |
o

: __ Arphmartnen =
o mplsTmammEn = Pl
LleTyeT =

op 0

- £ =

|.-
21. Activate the Schematic1-tran simulation profile from Project Manager.

Note: For your convienience, the design already has the statemachine block added. If
you want to add your own statemachine block, ensure that the your part’s block shape
and pin locations are same as the already added one for minimum modification.

22. Simulate the project and view the output in PSpice as shown in the following screenshot.

5TOP
DRIVER_HEUTRAL
DRIVER_UP
DRIVER_DOWH
PASSEHGER_MEUTRAL
PASSEHGER_UP
PASSEHGER_DOWH

OBSTACLE
up
DOWH

Note: Ensure that the StateMachine PSpice library(.lib) is added in the Simulation profile
as configured files.

April 2016 23 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for State Model Simulation

You can note that the Capture design simulated with the Digital C/C++ Combinatorial part
successfully just like any other Capture part.

The State Transition chart is provided in a .csv file to verify if the state model transition is
correct.

April 2016 24 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC

6

Generating and Simulating a Verilog-A
file based PSpice DMI Model

This module illustrates importing of a Verilog-A file and translating the file to a PSpice DMI
model. The DMI Template Code Generator feature supports Verilog-A file import using the
ADMS parser.

In this module, you will:
m Import the Verilog-A file using Model Editor and convert it to a PSpice DMI model

m Simulate the PSpice DMI model and compare the DMI model’s results with the regular
capacitor simulation results

Do the following steps to generate a PSpice DMI model from a Verilog-A file:
1. Launch Model Editor.

If prompted, choose a license that includes PSpice A/D; for example, OrCAD PSpice
Designer Plus.

2. Select Model — DMI Template Code Generator.

You can verify the path to the nom.lib file from: Simulation Settings window -
Configuration Files tab - Library category.

3. Enter the following data in the DMI Template Code Generator window to generate a
VerilogA-ADMS based PSpice DMI model:

Part Name: cap

Part Type: VerilogA-ADMS

Verilog-A File: <Path to cap.va>

XML Folder: <Installation Path>\tools\pspicelapi\adms\xmls

DLL Location: verilogA folder

April 2016 25 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a Verilog-A file based PSpice DMI Model

The cap.va fle is a verilog-A model for a capacitor that uses 2 parameters to define the
capacitor values: C1 and C2:

“include "discipline.h"

module cap(p,n);
inout p,n;
electrical p,n;
parameter real c¢l=0 from [0:inf);

parameter real c¢2=0 from [0:inf);

analog
I(p,n) <+ ddt((cl+2*c2)*V(p,n));

endmodule
4. Click OK on the DMI Template Code Generator window.

The PSpice DMI model(.lib) is auto-generated from the verilog-A file, and a log file is
generated.

5. If you get any build error during PSpice DMI model generation, debug the model
behaviour using a visual studio project file (.vcxproj) in Visual Studio Community 2013.

The visual studio project file gets generated during the PSpice DMI model generation
process.

6. Once the PSpice library is successfully generated, export the PSpice library to the
Capture library using Export to Part Library in Model Editor.

7. Open the Design1.dsn file, present in the veriloga folder, in OrCAD Capture.
The Design1.dsn file has two schematics - cap and capDMI.

8. Open the Page1 schematic page of the cap schematic.

E an b
" w

W=0
WE=h @ R1
TO = 1n 200
TR = 1u
TF = 1u . i |
Pl = 10
PER = 20u |

"o

April 2016 26 Product Version 17.2-2016

©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a Verilog-A file based PSpice DMI Model

9. If not already activated, activate the cap-tran simulation profile from Project Manager.
Note: For your convienience, the design already has a capacitor added.

10. Simulate the project and view the output in PSpice as shown in the following screenshot.

1 W(U1z+) w(c1:2)

11. Change the simulation profile to capDMI-tran.

Note: For your convienience, the page1 of the capDMI schematic has the DMICAP
block added for capacitor. If you want to add your own DMICAP block, ensure that the
your part’s block shape and pin locations are same as the already added one for
minimum modification.

Note: Ensure that the capDMI-tran Simulation profile has cap.lib as configured library.

12. Run Simulation and view the output in PSpice as shown in the following screenshot.

1 W{U1:H1) U{u1:H2)

The PSpice DMI model uses an equation C1 + 2*C2 to calculate value of equivalent
capacitance.

April 2016 27 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a Verilog-A file based PSpice DMI Model

April 2016 28 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC

7

Generating and Simulating a SystemC
based PSpice DMI Model

This module covers a simple example of generating and simulating a SystemC based PSpice
DMI Model.

In thi module, you will:
m Write a Finite Impluse Response (FIR) filter model in SystemC

B Generate a PSpice DMI Template Code for the SystemC based PSpice DMI model using
Model Editor

B Integrate the SystemC model with the DMI Template Code

Do the following steps to generate and simulate a SystemC based PSpice DMI model:
1. Launch Model Editor.

If prompted, choose a license that includes PSpice A/D; for example, OrCAD PSpice
Designer Plus..

2. Select Model — DMI Template Code Generator.

3. Enter the following data in the DMI Template Code Generator window to generate a
Digital C/C++ based Combinatorial PSpice DMI model:

Part Name: FIR

Part Type: SystemC

Interface Type: Clocked

DLL Location: PSpiceSystems/SystemC

4. Click on the Ports radio button in the DMI Template Code Generator window to enter the
following data:

Enter number of input ports: 2

April 2016 29 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a SystemC based PSpice DMI Model

Enter number of 10 ports: 1

Port Name Port Port Size Default
Type Value Description
CLK Input 1 0 Clock Port
input Input 16 0
output 10 16 0
Part Entry

Specify the port count for Input and 10 Ports

L] L] L] L]

Enter nurmber ofinput parts

Enter nurnber of 10 ponts

Fort Mame Port Type Fort Size

CLK Input 1

Formi Input 16

Port2 0 LT

5. Click OK on the Port Entry window.

6. Click OK on the DMI Template Code Generator window.

Specify Port 5i2a for veclor ports, defaull size 15 1.
Initial values are used to initialize ports in device constructor code
CLK port s autorn atically created for Clocked interface type

Default Yalue Port Description

The DMI template code for the SysytemC model is generated and the log file is displayed
in the text editor. The PSpice library (.lib) is also generated successfully.

You can note that the generated library has pointer to a .dll file, that is, in this case
FIR.d11l. Now in some of the next steps you will add a model code to the generated

adaptor code.

April 2016 30
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

Product Version 17.2-2016

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a SystemC based PSpice DMI Model

kadels List] subckt ¥ FIR CLE Portl 0 Portl 1 Portl 2
+ Portl 3 Portl 4 Portl 5 Portl 6 Portl 7
Model Marme — Type My 1| 4 pore1 & Port1 9 Portl 10 Portl 11 Portl 12
H_FIR* SUBCKT + Portl 13 Portl 14 Portl 15 PortZ 0O PortzZ 1
+ PortiZ 2 Porti 3 Port:z: 4 Portiz 5 Porti 6 Portz 7
+ PortzZ &8 PortiZ 9 Porti 10 Portiz 11 PortiZ 12
+ PortiZ 13 Portiz 14 PortiZ 15
+ CPTICHAL: DFWR=5G DFWER DGND=3G DGHD
+ PARLMS:

Lmwodel FIR TIMING ugate |

+ tplhmn=6ns tplhty=9ns tplhmx=15ns

+ tphlmn=6ns tphlty=10ns tphlmx=15ns

+ 1

U1 LOSICEEP(17, 16 1 DPWE DGHND

CLE Portl 0 Portl 1 Portl 2 Portl 3
Portl 4 Portl 5 Portl &6 Portl 7 Portl S
Portl 9 Portl 10 Portl 11 Portl 12 Portl 13
FPortl 14 Portl 15 Porti 0O PortZ 1 Porti 2
Portz 3 PortiZ 4 Porti 5 Port:z & Porti 7
Portz & PortZ 9 PortZ 10 PortiZ 11 Porti 12
Portz 13 Port:z 14 Portz 15

FIR TIMING IC 3TD

C MODEL: FIR.dll FIR

PLRALMS:

.ends

O Tk T T e

7. Launch Visual Studio Community 2013 in your machine.

8. Click Open Projectin the Visual Studio’s Start Page and browse to the DL, 1ocation
for the Visual Studio Project.

In this case, the Visual Studio project is FIR.vcxproj.

9. Modify the default configuration in Configuration Manager to 64-bit platform as described
in Step 13 of Chapter 3.

10. Build the project using Build — Build Solution in the Visual Studio to verify if there are
no build issues.

11. Expand FIR project in Solution Explorer and open the SysCFIR. cpp file to edit it using
the following steps:

a. Search for SysCFIR: :entry function in SysCFIR. cpp and uncomment the
following code inside the function. This code implements an FIR filter using

SystemC.
void SysCFIR::entry () {
// const sc_uint<8> coef[5] = { 18, 77, 107, 77, 18 };
April 2016 31 Product Version 17.2-2016

©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a SystemC based PSpice DMI Model

// sc_int<16> taps[5];
// //reset code
// output.write(0);
// //reset internal variables
// //reset outputs
// wait () ;
// while (true) {
// //read inputs

// for (int 1 = 4; i > 0; i--) |
// taps([i] = tapsl[i - 1];
/7
// taps[0] = input.read();

// //algorithm

// sc_int<16> value;

// for (int 1 = 0; 1 < 5; 1i++) {
// value += coef[i] * tapsl[i];
/7 0}

// //write outputs

// output.write(value);

// FILE* fp = fopen("out.vcd", "a");
// fprintf (fp, "\n%d %4 %d", value);
// fclose(fp);

// cout << "Time[" << sc_time_stamp() << "] Value[0x"<< hex <<
value << "]" << endl;
// wait();

/7 }
}

b. Add the following line after m_SysCFIR->CLK (sysCsig_CLK) ; in the
PspSysCFIR: :pspSysCFIR(const char* pInstName, void*pRef)
function of the pspSysCFIR. cpp file:

m_SysCFIR->reset (sysCsig reset);

12. Rebuild the Visual Studio project using Build — Build Solution.
Ensure that the Release configuration is selected.

13. Once the PSpice library is generated, export the PSpice library to the Capture library
using Export to Part Library in Model Editor.

14. Open the Design1.dsn file, present in the Systemc folder, in OrCAD Capture.
15. If required, right-click and select Make Rootto make the Schematic1 schematic as root.

16. Open the Page1 schematic page.

April 2016 32 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a SystemC based PSpice DMI Model

17. Activate the Schematic1-tran simulation profile from Project Manager.

Note: For your convienience, the design already has the F/R block added. If you want
to add your own F/R block, ensure that the generated part’s block shape and pin
locations are same as the already added one for minimum modification.

Note: In the Capture design, if you have used the generated SystemC based PSpice
DMI model instead of the default model. Modify + C_MODEL: FIR.d1l FIRtO +
C_MODEL: FIR.d1l1l SysCFIR inthe generated PSpice library file (.lib).

18. Simulate the project and view the output in PSpice as shown in the following screenshot:

:INPUT @
:INPUT_1
:INPUT 2
:INPUT_3
:IMPUT 4
:INPUT &
:INPUT_6
:INPUT 7
TP _H
DUTPUT 1
UTPUT 10
UTPUT_11
UTPUT 12

UTPUT_13
UTPUT 14

UTPUT_15
DUTPUT_2
OUTPUT 3
OUTPUT &4
OUTPUT 5
OUTPUT_9
OUTPUT 8
ouTPUT 7
OUTPUT_6

Note: Ensure that the FIR PSpice library(.lib) is added in the Simulation profile as
configured files.

You can note that the Capture design simulated with the SystemC part successfully just
like any other Capture part.

April 2016 33 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a SystemC based PSpice DMI Model

April 2016 34 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

	Contents
	Introduction to PSpice System Design
	Audience
	Prerequisities

	Setting up the Environment for PSpice DMI Models
	Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation
	Generating and Simulating a PSpice DMI Model for Analog Behavioral Circuit
	Generating and Simulating a PSpice DMI Model for State Model Simulation
	Generating and Simulating a Verilog-A file based PSpice DMI Model
	Generating and Simulating a SystemC based PSpice DMI Model

