
PSpice Device and System Modeling in C/
C++ and SystemC

Product Version 17.2-2016
April 2016

©1991-2015 Cadence Design Systems, Inc. All rights reserved.

Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Product PSpice contains technology licensed from, and copyrighted by: Apache Software Foundation, and
is © 2000-2005, Apache Software Foundation. All rights reserved. Sun Microsystems and © 1994-2007,
Sun Microsystems, Inc. Free Software Foundation and © 1989, 1991, Free Software Foundation, Inc.
Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation and © 2001, Regents
of the University of California. Daniel Stenberg and © 1996 - 2006, Daniel Stenberg. UMFPACK and © 2005,
Timothy A. Davis, University of Florida, (davis@cise.ulf.edu). Ken Martin, Will Schroeder, Bill Lorensen and
© 1993-2002, Ken Martin, Will Schroeder, Bill Lorensen. Massachusetts Institute of Technology and © 2003,
the Board of Trustees of Massachusetts Institute of Technology. ADMS[GNU Lesser General Public
License], and © 2015, ADMS. All rights reserved.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document
are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or
registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are
used with permission. All other trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and
contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or
distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as
specified in this permission statement, this publication may not be copied, reproduced, modified, published,
uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence.
Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its
customer.

2. The publication may not be modified in any way.
3. Any authorized copy of the publication or portion thereof must include all original copyright,

trademark, and other proprietary notices and this permission statement.
4. The information contained in this document cannot be used in the development of like products or

software, whether for internal or external use, and shall not be used for the benefit of any other party,
whether or not for consideration.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of such
information will not infringe any third party rights, nor does Cadence assume any liability for damages or
costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

PSpice Device and System Modeling with C/C++ and SystemC

Contents
1
Introduction to PSpice System Design. 5

Audience . 5
Prerequisities . 5
April 2016 3 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
2
Setting up the Environment for PSpice DMI Models 1

3
Generating and Simulating a PSpice DMI model for Digital
Power Supply Simulation . 3

4
Generating and Simulating a PSpice DMI Model for Analog
Behavioral Circuit . 13

5
Generating and Simulating a PSpice DMI Model for State
Model Simulation . 19

6
Generating and Simulating a Verilog-A file based PSpice DMI
Model. 25

7
Generating and Simulating a SystemC based PSpice DMI
Model. 29
April 2016 4 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

1
Introduction to PSpice System Design

The PSpice System Design with C and SystemC tutorial provides detailed instructions to
build and compile various PSpice Device Modeling Interface (DMI) compatible C and
SystemC models using Microsoft® Visual Studio Community 2013. It also provides step-by-
step instructions to simulate these models in PSpice A/D.

This tutorial covers the following topics:

■ Setting up the Environment for PSpice DMI Models

■ Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation

■ Generating and Simulating a PSpice DMI Model for Analog Behavioral Circuit

■ Generating and Simulating a Verilog-A file based PSpice DMI Model

■ Generating and Simulating a PSpice DMI Model for State Model Simulation

■ Generating and Simulating a SystemC based PSpice DMI Model

Audience

This tutorial is designed for first-time users of PSpice DMI models in PSpice simulation. If you
want to use PSpice DMI models in PSpice simulation, compile and build the models using
Microsoft Visual Studio Community 2013.

Prerequisities

Before you start to run the tutorial, ensure that the following software are installed on your
system:

■ Microsoft Visual Studio Community 2013

■ Cadence® OrCAD® Capture 17.2-2016 or onwards

■ Cadence® PSpice® A/D 17.2-2016 or onwards
April 2016 5 Product Version 17.2-2016

Introduction to PSpice System Design
■ Mathworks® Matlab 2015b or onwards(64-bit)

It is assumed that you are familiar with Microsoft Visual Studio Community 2013, Cadence
OrCAD Capture, Cadence PSpice A/D, and Mathworks Matlab. The scope of this document
does not include explaining the interfaces, commands, or various methodologies of these
software. This document contains detailed instructions around building and compiling PSpice
DMI models.

Note: For more information on OrCAD Capture, PSpice A/D, and C APIs, refer to OrCAD
Capture User Guide, PSpice Reference Guide, PSpice Device Modeling Interface
API Reference, and PSpice User Guide.
April 2016 6 Product Version 17.2-2016

../pspDMIRef/pspDMIRefTOC.html#firstpage
../pspug/pspugTOC.html#firstpage
../pspcref/pspcrefTOC.html#firstpage
../cap_ug/cap_ugTOC.html#firstpage

PSpice Device and System Modeling with C/C++ and SystemC
2
Setting up the Environment for PSpice
DMI Models

This chapter explains the setup procedure for C and SystemC models in PSpice.

Do the following steps to create the environment variables that you need to get started to
create a Visual Studio Project:

1. Unzip the PSpiceSystems.zip file in your system.

Once unzipped, you can see the following sub-folders inside the PSpiceSystems
folder: DigitalPowerSupply, NoiseFilter, StateModel, VerilogA, and
SystemC.

2. Create a new environment variable, SYSTEMC, and set the SystemC installation path
as its value.

By default, the systemC is installed with the Cadence installation at <installation
path>\tools\pspice\tclscripts\pspModelCreate\SystemC.

3. Open the Windows command prompt and verify the SystemC path using the set
command.
April 2016 1 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Setting up the Environment for PSpice DMI Models
April 2016 2 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
3
Generating and Simulating a PSpice DMI
model for Digital Power Supply
Simulation

This module covers an example of a Digital Power Supply with models using multiple level of
abstractions.

In this module, you will:

■ Generate a template code for PSpice DMI model

■ Use the PSpice DMI model for the Digital PWM Control block

■ Simulate the PSpice DMI model with respect to Digital Power Supply circuit

Do the following steps to generate a template code for a PSpice DMI model:

1. Select Start Menu – All Programs – Cadence 17.2-2016 – Product Utilities –
PSpice Utilities – Model Editor to launch Model Editor.

If prompted, choose a license that includes PSpice A/D; for example, OrCAD PSpice
Designer Plus.

2. Select Model – DMI Template Code Generator in Model Editor.
April 2016 3 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation
3. Enter the following data in the DMI Template Code Generator window to generate a
Digital C/C++ based PSpice DMI model:

Part Name: PWMControl

Part Type: Digital C/C++

Interface Type: Clocked

DLL Location: DigitalPowerSupply folder
April 2016 4 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation
4. Select the CSV File checkbox in the Port Entry field.

A Port Entry window is displayed.

5. Browse the portsv.csv file from DigitalPowerSupply folder.

The ports are automatically read from the CSV file.
April 2016 5 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation
6. Review the port entry list in the Port Entry window and click OK.

7. Click the Global Parameters click box.

A Global Parameters window is displayed.

8. Enter the following details in the Global Parameters window for PER and D parameters
and click OK:

Enter number of parameters: 2

9. Click OK on the DMI Template Code Generator window.

A log file is displayed. A .lib file is successfully created at the specified DLL location and
opened in Model Editor.

10. Click on the library name in the Model List window of the Model Editor to see the library
infromation.

Parameter
Name

Parameter Type Default Value Parameter Description

PER double 0 Period

D double 0 Duty Cycle
April 2016 6 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation
In the following screenshot, you can see that the library points to the DLL that is created
for the model. You will complete the template model code that was generated on creation
of the .dll and .lib file and regenerate the .dll file.

11. Launch Visual Studio Community 2013 in your machine.

12. Click Open Project in the Visual Studio’s Start Page and browse to the DLL location
for the Visual Studio Project.

In this case, the Visual Studio project is PWMControl.vcxproj.

13. Modify the default configuration in Configuration Manager (Build – Configuration
Manager) to 64-bit platform using the following steps:

a. In the Active Solution Platform drop-down list, select the <New...> option
to open the New Solution Platform window.

b. In the Type or select the new platform drop-down list, select 64-bit platform
and close the window.

14. Build the project using Build – Build Solution in the Visual Studio to verify if there are
no build issues.

15. Expand PWMControl project in Solution Explorer and open the
PWMControl_user.cpp file to edit using the following steps:

a. Search the following text in the .cpp file: psppspPWMControl::evaluate(

b. Once you find psppspPWMControl::evaluate(, search for // LOGIC TO BE
IMPLEMENTED BY USER.

You will add the model logic code here.

c. Add the following code after PW=pVectorStates[17].getLevel(); inside the
if loop:

pspBits2Int(FB, FBInt, 8);

pspBits2Int(REF, REFInt, 8);
April 2016 7 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation
if (REFInt > FBInt && mD < 0.98) {

mD += 0.001;

}

else if (REFInt < FBInt && mD > 0.02) {

mD -= 0.01; fprintf(stderr, "Reducing DutyCycle\n");

}

if (mCurrentCLKCount<= 0) {

mCurrentCLKCount = mPER;

}

if (mCurrentCLKCount > mD * mPER)

mPWStatus = false;

else

mPWStatus = true;

if (mPWStatus==true && (int)PW != 1){

PW = pspBit::HI;

}

else if (mPWStatus == false && (int)PW != 0){

PW = pspBit::LO;

}

d. Modify fp_SetState(mRef, j, &lState, NULL); to fp_SetState(mRef,
j-17, &lState, NULL);

e. Save the file.

16. As the code require some extra variables, add the following text just before the last
closing brace in the pspPWMControl.h file:

unsigned int FBInt, REFInt;

int mCurrentCLKCount;

bool mPWStatus;

17. Save the pspPWMControl.h file.

18. Rebuild the Visual Studio project using Build – Build Solution.

The model DLL file is built with the required model evalution code.

Note: When you rebuild your solution, ensure that the Configuration is Release, not
Debug.

19. Once the PSpice library is generated, export the PSpice library to the Capture library
using Export to Part Library in Model Editor.
April 2016 8 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation
20. Open the DC-DC.dsn file, present in the DigitalPowerSupply folder, in OrCAD
Capture.

21. Right-click and select Make Root to make the BuckConverter-SW-Control schematic as
root.

22. Open the BuckConverter-SW-Control schematic page.

23. Descend on the Software Controlled Switch, that is, U1, to see an Software-
Controlled PWM Block implementation.
April 2016 9 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation
24. Activate the BuckConverter-SW-Control-tran simulation profile from the project
Manager.

Note: For your convienience, the design already has the PWMControl block added. If
you want to add your own PWMControl block, ensure that the your part’s block shape
and pin locations are same as the already added one for minimum modification.

25. Simulate the project and view the output in PSpice as shown in the following screenshot.

Note: Ensure that the PWMControl PSpice library(.lib) is added in the Simulation profile
as configured files.

You can note that the Capture design simulated with the Digitally Clocked C/C++
PWMControl part successfully just like any other Capture part.
April 2016 10 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation
April 2016 11 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation
April 2016 12 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
4
Generating and Simulating a PSpice DMI
Model for Analog Behavioral Circuit

This module describe steps to generate an analog behavioral model based PSpice DMI
model. In this module, a MATLAB averaging filter is taken as an example.

In this module, you will:

■ Generate a template code for PSpice DMI model

■ Use the PSpice DMI model as an averaging filter

■ Simulate the PSpice DMI model in a Capture design

Do the following steps to generate the PSpice DMI model and simulate the model in a Capture
project:

1. Launch Model Editor.

If prompted, choose a license that includes PSpice A/D; for example, OrCAD PSpice
Designer Plus.

2. Select Model – DMI Template Code Generator.

3. Enter the following data in the DMI Template Code Generator window to generate an
Analog based PSpice DMI model:

Part Name: NoiseFilter

Part Type: Analog

Model Type: Function-Dependent Voltage Source

DLL Location: NoiseFilter folder

4. Click the Terminal Entry box in the Terminals field.

A Terminal Entry window will be displayed.
April 2016 13 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for Analog Behavioral Circuit
5. By default, the Terminal Entry window has 4 terminals, that are, 2 input terminals and 2
outer terminals.

6. Change the terminal description of both the input terminals to Noisy Input 1 and Noise
Input 2 instead of Control Input 1 and Control Input 2 and click OK.

7. Click OK on the DMI Template Code Generator window.

A log file is displayed. A .lib file is successfully created at the specified DLL location and
opened in Model Editor.

8. Click on the library name in the Model List window of the Model Editor to see the library
infromation.

In the following screenshot, you can see that the library points to the DLL that is created
for the model. You will complete the template model code that was generated on creation
of the .dll and .lib file and regenerate the .dll file.

9. Launch Visual Studio Community 2013 in your machine.

10. Click Open Project in the Visual Studio’s Start Page and browse to the DLL location
for the Visual Studio Project.
April 2016 14 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for Analog Behavioral Circuit
In this case, the Visual Studio project is NoiseFilter.vcxproj.

11. Modify the default configuration in Configuration Manager (Build – Configuration
Manager) to 64-bit platform using the following steps:

a. In the Active Solution Platform drop-down list, select the <New...> option
to open the New Solution Platform window.

b. In the Type or select the new platform drop-down list, select 64-bit platform
and close the window.

12. Build the project using Build – Build Solution in the Visual Studio to verify if there are
no build issues.

13. Expand NoiseFilter project in Solution Explorer and open the NoiseFilter_user.cpp
file to edit using the following steps:

a. Add the following code after #include “pspNoiseFilter.h”:

extern "C" {

#include "../averaging_filter/averaging_filter.h"

}

The averaging_filter.h file is an MATLAB generated header file that contains
the averaging filter function.

b. Add the following code after double gain = 0.0;:

///user code

if (pMode != MDTRAN) {

for (int i = 0; i < 16 + MSTVCT; i++) {

sv.x[i] = xVal;

}

}

sv.y[0] = yVal = averaging_filter(xVal, sv.x);

////

This code updates the state vector with respect to the latest input value and calls the
averaging_filter function for gain computation.

c. Save the NoiseFilter_user.cpp file.

14. In Visual Studio, right-click on the NoiseFilter in the Solution Explorer and select Add –
Existing Item to add the MATLAB generated averaging_filter.c file to the project

The averaging_filter.c is located in the averaging_filter folder.

15. Rebuild the Visual Studio project using Build – Build Solution.
April 2016 15 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for Analog Behavioral Circuit
The model DLL file is built with the required model evalution code.

Note: When you rebuild your solution, ensure that the Configuration is Release, not
Debug.

16. Once the PSpice library is generated, export the PSpice library to the Capture library
using Export to Part Library in Model Editor.

17. Open the DC-DC.dsn file, present in the NoiseFilter folder, in OrCAD Capture.

18. Right-click and select Make Root to make the BuckConverter-SW-Control schematic as
root.

19. Open the BuckConverter-SW-Control schematic page.

20. Select Instance U2, that is, NOISECOMP.

21. Right-click U2 and select Edit Properties to view the implementation defined as
NOISECOMP.

This is added to add noise to the input voltage. The following implementation of
NOISECOMP illustrates a random noise being added to the input voltage:

.subckt noisecomp OUTPUT input

E_RND OUTPUT 0 VALUE={V(INPUT)+0.3*RND}

R1 input 0 100K

.ends

22. Descend on the Software Controlled Switch, that is, U1, to see an Software-
Controlled PWM Block implementation.

23. Activate the BuckConverter-SW-Control-tran simulation profile from the project
Manager.

Note: For your convienience, the design already has the averaging_filter block added
as noisefilter. If you want to add your own noisefilter block, ensure that the your part’s
block shape and pin locations are same as the already added one for minimum
modification.

If you have added your own noisefilter block, ensure that the pin 2 of Input and pin 4
of Output of the block are connected to GND.

24. Simulate the project and view the output in PSpice as shown in the following screenshot.
April 2016 16 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for Analog Behavioral Circuit
Note: Ensure that the NoiseFilter PSpice library(.lib) is added in the Simulation profile
as configured files.

You can note that the Capture design simulated with the Analog NoiseFilter part
successfully just like any other Capture part.
April 2016 17 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for Analog Behavioral Circuit
April 2016 18 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
5
Generating and Simulating a PSpice DMI
Model for State Model Simulation

This module covers an example of an automotive state model being simulated in PSpice as
a PSpice DMI model. It uses an implementation of an automotive power window control
module. The control logic is based on a state model which is referred from a MATLAB
reference design.

In this module, you will:

■ Generate a template code for PSpice DMI model using the DMI Template Code
Generator window

■ Use the PSpice DMI model for the power window module circuit

■ Simulate the PSpice DMI model with respect to power window module circuit

Do the following steps to generate a template code for a PSpice DMI model:

1. Launch Model Editor.

If prompted, choose a license that includes PSpice A/D; for example, OrCAD PSpice
Designer Plus.

2. Select Model – DMI Template Code Generator to open DMI Template Code
Generator window.

3. Enter the following data in the DMI Template Code Generator window to generate a
Digital C/C++ based Combinatorial PSpice DMI model:

Part Name: StateMachine

Part Type: Digital C/C++

Interface Type: Combinatorial

DLL Location: PSpiceSystems/StateModel/Code

4. Click on the Ports radio button to enter Input and IO ports for the model.
April 2016 19 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for State Model Simulation
A Port Entry window is displayed.

5. Enter the following information in the Port Entry window:

Enter number of input ports: 4

Enter number of IO ports:2

6. Click OK on the Port Entry window.

7. Click OK on the DMI Template Code Generator window.

A log file is displayed. A .lib file is successfully created at the specified DLL location and
opened in Model Editor.

8. Click on the library name in the Model List window of the Model Editor to see the library
infromation.

Port Name Port Type Port Size Default Value Port Description

STOP Input 1 0

DRIVER Input 3 0 0=>Neutral, 1=>Up, 2=>Down

PASSENGER Input 3 0 0=>Neutral, 1=>Up, 2=>Down

OBSTACLE IO 1 0

UP IO 1 0

DOWN IO 1 0
April 2016 20 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for State Model Simulation
In the following screenshot, you can see that the library points to the DLL that is created
for the model. You will complete the template model adaptor code that was generated on
creation of the .dll and .lib file and regenerate the .dll file.

9. Launch Visual Studio Community 2013 in your machine.

10. Click Open Project in the Visual Studio’s Start Page and browse to the DLL location
for the Visual Studio Project.

In this case, the Visual Studio project is StateMachine.vcxproj.

11. Modify the default configuration in Configuration Manager to 64-bit platform as described
in Step 13 of Chapter 3.

12. Build the project using Build – Build Solution in the Visual Studio to verify if there are
no build issues.

13. Expand StateMachine project in Solution Explorer and open the
StateMachine_user.cpp file to edit it using the following steps:

a. Add the following code after #include "pspStateMachine.h":

#include "../FSM.cpp"

The FSM.cpp file contains the implementation of State Machine Model.

b. Add the following code after // LOGIC TO BE IMPLEMENTED BY USER:

int driverVect[3];

driverVect[0] = (int)DRIVER[0];

driverVect[1] = (int)DRIVER[1];

driverVect[2] = (int)DRIVER[2];

int passengerVect[3];

passengerVect[0] = (int)PASSENGER[0];

passengerVect[1] = (int)PASSENGER[1];
April 2016 21 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for State Model Simulation
passengerVect[2] = (int)PASSENGER[2];

int obstacleInt;

if((int)OBSTACLE == 1)

obstacleInt = 1;

else

obstacleInt = 0;

int stopInt;

if((int)STOP == 1)

stopInt = 1;

else

stopInt = 0;

setState(stopInt, obstacleInt, driverVect, passengerVect, ¤tState,
&nextState, &prevState, &windowMovementOutput, timer);

if(windowMovementOutput.moveUp == 1)

UP = 1;

else

UP = 0;

if(windowMovementOutput.moveDown == 1)

DOWN = 1;

else

DOWN = 0;

The setState function is the promary function that updates the current state of the
State Machine and output signals of the Power Window Control module with respect
to input signals and the last state of the State Machine.

c. Edit fp_SetState(mRef, j, &lState, NULL); to fp_SetState(mRef, j-
8, &lState, NULL); for the two different instances.

14. Add the following code in the pspStateMachine.h file after #include
"pspiceDigApiDefs.h":

#include "../FSM.h"

15. Add the following code in the pspStateMachine.h file after double mPrevTicks;:

// add required class variables here

int timer;

states currentState;

states prevState;

states nextState;

struct window_movement windowMovementOutput;

16. Rebuild the Visual Studio project using Build – Build Solution.

Ensure that the Release configuration is selected.
April 2016 22 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for State Model Simulation
17. Once the PSpice library is generated, export the PSpice library to the Capture library
using Export to Part Library in Model Editor.

18. Open the StateMachine.dsn file, present in the StateModel folder, in OrCAD Capture.

19. Right-click and select Make Root to make the Schematic1 schematic as root.

20. Open the Page1 schematic page.

21. Activate the Schematic1-tran simulation profile from Project Manager.

Note: For your convienience, the design already has the statemachine block added. If
you want to add your own statemachine block, ensure that the your part’s block shape
and pin locations are same as the already added one for minimum modification.

22. Simulate the project and view the output in PSpice as shown in the following screenshot.

Note: Ensure that the StateMachine PSpice library(.lib) is added in the Simulation profile
as configured files.
April 2016 23 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a PSpice DMI Model for State Model Simulation
You can note that the Capture design simulated with the Digital C/C++ Combinatorial part
successfully just like any other Capture part.

The State Transition chart is provided in a .csv file to verify if the state model transition is
correct.
April 2016 24 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
6
Generating and Simulating a Verilog-A
file based PSpice DMI Model

This module illustrates importing of a Verilog-A file and translating the file to a PSpice DMI
model. The DMI Template Code Generator feature supports Verilog-A file import using the
ADMS parser.

In this module, you will:

■ Import the Verilog-A file using Model Editor and convert it to a PSpice DMI model

■ Simulate the PSpice DMI model and compare the DMI model’s results with the regular
capacitor simulation results

Do the following steps to generate a PSpice DMI model from a Verilog-A file:

1. Launch Model Editor.

If prompted, choose a license that includes PSpice A/D; for example, OrCAD PSpice
Designer Plus.

2. Select Model – DMI Template Code Generator.

You can verify the path to the nom.lib file from: Simulation Settings window -
Configuration Files tab - Library category.

3. Enter the following data in the DMI Template Code Generator window to generate a
VerilogA-ADMS based PSpice DMI model:

Part Name: cap

Part Type: VerilogA-ADMS

Verilog-A File: <Path to cap.va>

XML Folder: <Installation Path>\tools\pspice\api\adms\xmls

DLL Location: VerilogA folder
April 2016 25 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a Verilog-A file based PSpice DMI Model
The cap.va fle is a verilog-A model for a capacitor that uses 2 parameters to define the
capacitor values: C1 and C2:

`include "discipline.h"

module cap(p,n);

 inout p,n;

 electrical p,n;

 parameter real c1=0 from [0:inf);

 parameter real c2=0 from [0:inf);

 analog

 I(p,n) <+ ddt((c1+2*c2)*V(p,n));

endmodule

4. Click OK on the DMI Template Code Generator window.

The PSpice DMI model(.lib) is auto-generated from the verilog-A file, and a log file is
generated.

5. If you get any build error during PSpice DMI model generation, debug the model
behaviour using a visual studio project file (.vcxproj) in Visual Studio Community 2013.

The visual studio project file gets generated during the PSpice DMI model generation
process.

6. Once the PSpice library is successfully generated, export the PSpice library to the
Capture library using Export to Part Library in Model Editor.

7. Open the Design1.dsn file, present in the VerilogA folder, in OrCAD Capture.

The Design1.dsn file has two schematics - cap and capDMI.

8. Open the Page1 schematic page of the cap schematic.
April 2016 26 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a Verilog-A file based PSpice DMI Model
9. If not already activated, activate the cap-tran simulation profile from Project Manager.

Note: For your convienience, the design already has a capacitor added.

10. Simulate the project and view the output in PSpice as shown in the following screenshot.

11. Change the simulation profile to capDMI-tran.

Note: For your convienience, the page1 of the capDMI schematic has the DMICAP
block added for capacitor. If you want to add your own DMICAP block, ensure that the
your part’s block shape and pin locations are same as the already added one for
minimum modification.

Note: Ensure that the capDMI-tran Simulation profile has cap.lib as configured library.

12. Run Simulation and view the output in PSpice as shown in the following screenshot.

The PSpice DMI model uses an equation C1 + 2*C2 to calculate value of equivalent
capacitance.
April 2016 27 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a Verilog-A file based PSpice DMI Model
April 2016 28 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
7
Generating and Simulating a SystemC
based PSpice DMI Model

This module covers a simple example of generating and simulating a SystemC based PSpice
DMI Model.

In thi module, you will:

■ Write a Finite Impluse Response (FIR) filter model in SystemC

■ Generate a PSpice DMI Template Code for the SystemC based PSpice DMI model using
Model Editor

■ Integrate the SystemC model with the DMI Template Code

Do the following steps to generate and simulate a SystemC based PSpice DMI model:

1. Launch Model Editor.

If prompted, choose a license that includes PSpice A/D; for example, OrCAD PSpice
Designer Plus..

2. Select Model – DMI Template Code Generator.

3. Enter the following data in the DMI Template Code Generator window to generate a
Digital C/C++ based Combinatorial PSpice DMI model:

Part Name: FIR

Part Type: SystemC

Interface Type: Clocked

DLL Location: PSpiceSystems/SystemC

4. Click on the Ports radio button in the DMI Template Code Generator window to enter the
following data:

Enter number of input ports: 2
April 2016 29 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a SystemC based PSpice DMI Model
Enter number of IO ports: 1

5. Click OK on the Port Entry window.

6. Click OK on the DMI Template Code Generator window.

The DMI template code for the SysytemC model is generated and the log file is displayed
in the text editor. The PSpice library (.lib) is also generated successfully.

You can note that the generated library has pointer to a .dll file, that is, in this case
FIR.dll. Now in some of the next steps you will add a model code to the generated
adaptor code.

Port Name Port
Type

Port Size Default
Value

Port
Description

CLK Input 1 0 Clock Port

input Input 16 0

output IO 16 0
April 2016 30 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a SystemC based PSpice DMI Model
7. Launch Visual Studio Community 2013 in your machine.

8. Click Open Project in the Visual Studio’s Start Page and browse to the DLL location
for the Visual Studio Project.

In this case, the Visual Studio project is FIR.vcxproj.

9. Modify the default configuration in Configuration Manager to 64-bit platform as described
in Step 13 of Chapter 3.

10. Build the project using Build – Build Solution in the Visual Studio to verify if there are
no build issues.

11. Expand FIR project in Solution Explorer and open the SysCFIR.cpp file to edit it using
the following steps:

a. Search for SysCFIR::entry function in SysCFIR.cpp and uncomment the
following code inside the function. This code implements an FIR filter using
SystemC.

void SysCFIR::entry() {

// const sc_uint<8> coef[5] = { 18, 77, 107, 77, 18 };
April 2016 31 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a SystemC based PSpice DMI Model
// sc_int<16> taps[5];

// //reset code

// output.write(0);

// //reset internal variables

// //reset outputs

// wait();

// while (true) {

// //read inputs

// for (int i = 4; i > 0; i--) {

// taps[i] = taps[i - 1];

// }

// taps[0] = input.read();

// //algorithm

// sc_int<16> value;

// for (int i = 0; i < 5; i++) {

// value += coef[i] * taps[i];

// }

// //write outputs

// output.write(value);

// FILE* fp = fopen("out.vcd", "a");

// fprintf(fp, "\n%d %d %d", value);

// fclose(fp);

// cout << "Time[" << sc_time_stamp() << "] Value[0x"<< hex <<
value << "]" << endl;

// wait();

// }

}

b. Add the following line after m_SysCFIR->CLK(sysCsig_CLK); in the
pspSysCFIR::pspSysCFIR(const char* pInstName, void*pRef)
function of the pspSysCFIR.cpp file:

m_SysCFIR->reset(sysCsig_reset);

12. Rebuild the Visual Studio project using Build – Build Solution.

Ensure that the Release configuration is selected.

13. Once the PSpice library is generated, export the PSpice library to the Capture library
using Export to Part Library in Model Editor.

14. Open the Design1.dsn file, present in the SystemC folder, in OrCAD Capture.

15. If required, right-click and select Make Root to make the Schematic1 schematic as root.

16. Open the Page1 schematic page.
April 2016 32 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a SystemC based PSpice DMI Model
17. Activate the Schematic1-tran simulation profile from Project Manager.

Note: For your convienience, the design already has the FIR block added. If you want
to add your own FIR block, ensure that the generated part’s block shape and pin
locations are same as the already added one for minimum modification.

Note: In the Capture design, if you have used the generated SystemC based PSpice
DMI model instead of the default model. Modify + C_MODEL: FIR.dll FIR to +
C_MODEL: FIR.dll SysCFIR in the generated PSpice library file (.lib).

18. Simulate the project and view the output in PSpice as shown in the following screenshot:

Note: Ensure that the FIR PSpice library(.lib) is added in the Simulation profile as
configured files.

You can note that the Capture design simulated with the SystemC part successfully just
like any other Capture part.
April 2016 33 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

PSpice Device and System Modeling with C/C++ and SystemC
Generating and Simulating a SystemC based PSpice DMI Model
April 2016 34 Product Version 17.2-2016
©1991-2015 Cadence Design Systems, Inc. All rights reserved.

	Contents
	Introduction to PSpice System Design
	Audience
	Prerequisities

	Setting up the Environment for PSpice DMI Models
	Generating and Simulating a PSpice DMI model for Digital Power Supply Simulation
	Generating and Simulating a PSpice DMI Model for Analog Behavioral Circuit
	Generating and Simulating a PSpice DMI Model for State Model Simulation
	Generating and Simulating a Verilog-A file based PSpice DMI Model
	Generating and Simulating a SystemC based PSpice DMI Model

